

LAND EAST OF STONE CROSS

LANE NORTH, LOWTON

Planning ref: A/12/77592

AIR QUALITY ASSESSMENT

For: Wainhomes Developments Ltd

February 2013

R1803-R01-v2

DOCUMENT CONTROL SHEET

Report Title: Land East of Stone Cross Lane North, Lowton

Air Quality Assessment

Client: Wainhomes Developments Limited

Report Reference Number: R1803-R01

Report Status: Final

Version: v2

Date: February 2013

for: Smith Grant LLP

	Name	Position	Signature	Date
Author	K Hawkins BSc MSc MIEMA CEnv MIAQM MIEnvSci	Partner	CH	11.02.13
Checked	L Dreiling BSc AIEMA MIEnvSci MIAQM	Consultant	Loreiling	11.02.13

Document Revision Record:

Version	Report Status	Date	Details of Revision
v1	draft	11.02.13	draft for client review
v2	Final	11.02.12	final version; no edits to draft

LAND EAST OF STONE CROSS LANE NORTH, LOWTON

AIR QUALITY ASSESSMENT

For: Wainhomes Developments Limited

CONTENTS

- 1. Introduction
- 2. Technical and Legislative Context
- 3. Assessment Methodology
- 4. Proposed Development
- 5. Baseline Conditions
- 6. Assessment Construction Phase
- 7. Assessment Operational Phase
- 8. Mitigation
- 9. Residual Effects
- 10. Summary and Conclusions

FIGURES

- D01 Study Area
- D02 Construction Phase Assessment
- D03 ADMS-Roads Receptor Locations

APPENDICES

- A Correspondence with Wigan Council
- B Percentage change in AADT on Key Transport Links
- C ADMS-Roads Model Input Data
- D Results of ADMS-Roads Modelling

1 Introduction

1.1 Wainhomes Development Ltd (WDL) has submitted an outline planning application to Wigan Council (WC) for up to 400 dwellings with associated infrastructure and open space on an area of land to the east of Stone Cross Lane North, Lowton. The planning application was supported by an Environmental Statement (ES), dated November 2012. WC has now requested that an air quality assessment is provided in support of the ES and planning application. WDL has accordingly instructed Smith Grant LLP (SGP) to undertake the necessary air quality assessment.

1.2 Site details are:

Table 1.1: Site Details

Address	Land east of Stone Cross Lane North, Lowton
National Grid Reference	361600 397100
Local Authority	Wigan Council (WC)
Site Area	13.09ha
Nature of Current Site	open farmland with farm buildings
Proposed Development	outline planning application forms Phase 1 of the development and
	comprises 400 dwellings; overall future development is 670 dwellings

- 1.3 The following report assesses the impact of the proposed development on local air quality. In particular, it considers the potential for air quality and dust effects at receptor locations during the construction of the new development and from the additional traffic generated by the development, along with local air quality effects on new receptors to be introduced by the development. The report describes the methods used to assess the impacts, the baseline conditions currently existing at the site and surroundings, the potential direct and indirect impacts of the development arising from construction dust and vehicle emissions, and the mitigation measures required to prevent, reduce, or offset the impacts and the residual impacts.
- 1.4 The principal aspects considered during this assessment are:
 - o **nuisance dust and particulate matter**: fugitive dust and particulate matter (PM₁₀) arising during the construction phase;
 - o **road traffic emissions**: potential impacts of road traffic emissions (NO₂ and PM₁₀) on local air quality during the operational phase.

1.5 The site subject to the outline planning application forms part of a wider development site. The construction phase assessment has been undertaken for the specific application site. The operational assessment however has been undertaken through reference to the Transport Assessment undertaken by Royal Haskoning and associated traffic data in support of the planning application, and has taken into account the wider development of 670 dwellings.

2 Technical and Legislative Context

2.1 Technical Context

- 2.1.1 The airborne pollutants of principal concern in connection with demolition and construction activities and which are considered in the following assessment are fugitive dust and particulate matter less than less than $10\mu m$ (PM₁₀). The pollutants of principal concern in connection road traffic and considered in the following assessment are nitrogen oxides (NO_x), nitrogen dioxide (NO₂) and particulate matter less than $10\mu m$ (PM₁₀).
- 2.1.2 The term 'dust' typically refers to all airborne particulate matter and can be catagorised on the basis of the size of particles¹. The British Standard BS6069:1994 defines dust as particulate matter in the size range 1µm to 75µm in diameter. Dust can give rise to both soiling effects through dust deposition and human health effects through suspended particulates. Dust soiling will arise from the deposition of particulate matter (PM) in all size fractions, but will be associated mostly with particulate matter greater than 30µm. The ambient PM relevant to health outcomes will be that measured as PM₁0, which roughly equates to the mass of particles of less than 10µm in dust that are likely to be inhaled in the thoriac region of the respiratory tract. Recent information indicates that PM₂.5 (those particles of less than 2µm and which form a proportion of PM₁0) gives a stronger association with the observed ill-effects. PM₂.5 is referred to as fine particulates and PM₂.5-10 as the coarse fraction of particulate matter. The majority of construction dust is larger than 10 µm and hence the key potential impacts are associated with soiling effects.
- 2.1.3 Road transport is the main source in the UK of oxides of nitrogen (NO_x; comprises nitrogen dioxide (NO₂) and nitric oxide (NO)). NO itself is not considered harmful to human health. However, on release to the atmosphere it is usually rapidly oxidises to NO₂ which is associated with adverse effects on human health causing inflammation of the lungs at high concentrations. Long term exposure to NO₂ can affect lung function and

_

¹ Institute of Air Quality Management (IAQM): Guidance on the Assessment of the Impacts of Construction on Air Quality and the Determination of their Significance, December 2011

respiratory symptoms. Road transport is also a source of primary particulate matter (PM_{10} and $PM_{2.5}$) both as direct emissions through vehicle exhausts and as indirect emissions through tyre and brake wear, re-suspension of particulate matter on the road and road wear (mechanical abrasion and corrosion).

2.2 <u>UK Legislation</u>

Air Quality Standards Regulations 2010

- 2.2.1 The Air Quality Standards Regulations 2010 implement the 2008 EU ambient air quality objective (2008/50/EC) which sets legally binding limits for concentrations in outdoor air for major air pollutants that impact public health including particulate matter (PM₁₀ and PM_{2.5}) and nitrogen dioxide (NO₂).
- 2.2.2 In the UK, responsibility for meeting air quality limit values is devolved to the national administrations in Scotland, Wales and Northern Ireland. The Secretary of State for Environment, Food and Rural Affairs has responsibility for meeting the limit values in England and the Department for Environment, Food and Rural Affairs (Defra) co-ordinates assessment and air quality plans for the UK as a whole.

UK Air Quality Strategy 2007²

- 2.2.3 The UK Government and the devolved administrations are required under the Environment Act 1995 to produce a national air quality strategy (AQS). This was last reviewed and published in 2007. The strategy sets out the UK's air quality objectives and policy options to improve the air quality in the UK.
- 2.2.4 Part IV of the Environment Act 1995 and Part II of the Environment (Northern Ireland) Order 2002 requires local authorities in the UK to review air quality in their area and designate Air Quality Management Areas (AQMAs) if improvements are necessary. Where an air quality management area is designated, local authorities are also required to work towards the Strategy's objectives prescribed in regulations for that purpose. An air quality action plan describing the pollution reduction measures must then be put in place. These plans contribute to the achievement of air quality limit values at local level.
- 2.2.5 The AQS objectives for NO_x, NO₂, PM₁₀ and PM2.5 are detailed in the following table:

² DEFRA, (2007), The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, 2007

Table 2.1: Air Quality Objectives (AQOs)

pollutant	objective	date	comment
NO ₂	40 μg/m³, annual mean	31 December 2005	
	200 μg/m ³ , hourly mean, not to be	31 December 2005	
	exceeded more than 18 times per		
	annum		
NO _x	30 μg/m³, annual mean	31 December 2000	protection of vegetation
			and ecosystems
PM ₁₀	40 μg/m³, annual mean	31 December 2004	
	50 μg/m ³ , 24 hour mean, not to be	31 December 2004	
	exceeded more than 35 times per		
	annum		
PM _{2.5}	25 μg/m³, annual mean	2020	new, not legally binding
	15% reduction, urban background	2010 - 2020	target, UK urban areas

Notes: The Regulations refer to locations where members of the public are regularly present. The AQOs should apply as follows:

<u>Annual mean</u>: all locations where members of the public might be regularly exposed; including facades of residential properties, schools, hospitals, care homes etc

<u>24-hour and 8-hour means</u>: all locations where the annual mean objectives apply together with hotels and gardens of residential properties

1-hour mean: all locations where the annual mean, 24-hour and 8-hour means apply; also kerbside sites, parts of car parks, bus stations and railway stations which are not fully enclosed and any outdoor locations where members of the public might reasonably be expected to spend 1 hour or longer.

Dust Standards and Control

- 2.2.6 'Dust' as such is not regulated as a pollutant under the Air Quality Strategy 2007 or Air Quality Regulations 2010. Controls of soiling and nuisance impacts are typically achieved through conditions within planning permissions and / or environmental permits requiring the implementation of a dust management plan to prevent amenity impacts. For industrial and trade premises that do not require an Environmental Permit to operate dust is controlled under Part III of the Environmental Protection Act 1990 (EPA 1990). Nuisance is defined as 'any dust, steam, smell or other elluvial arising on industrial or trade or business premises and being prejudicial to health or a nuisance'.
- 2.2.7 There are no UK statutory or recommended levels of dust deposition which constitute an acknowledged nuisance. Public concerns in relation to dust include the rate of deposition and / or the level of dustiness. Nuisance may be alleged when the dust coverage on surfaces is visible in contrast with other cleaner areas, especially if it occurs regularly. Severe nuisance is likely to be alleged when dust is perceptible without reference to a clean surface. The possible onset of nuisance from a particular source is said to occur

when dust deposition becomes noticeable, typically at a level which is 2 - 3 times background levels.

2.3 National Planning Policy and Guidance

National Planning Policy Framework 2012³

- 2.3.1 The National Planning Policy Framework (NPPF) sets out the Government's planning policies for England and how these are expected to be applied. Paragraph 2 of the Framework states that:
 - 'Planning law requires that applications for planning permission must be determined in accordance with the development plan, unless material considerations indicate otherwise. The National Planning Policy Framework must be taken into account in the preparation of local and neighbourhood plans, and is a material consideration in planning decisions. Planning policies and decisions must reflect and where appropriate promote relevant EU obligations and statutory requirements.'
- 2.3.2 The Framework provides some general guidance to local authorities on taking air pollution into account in planning policies and decisions. Paragraph 109 of the Framework states: 'The planning system should contribute to and enhance the natural and local environment by.....preventing both new and existing development from contributing to or being put at unacceptable risk from, or being adversely affected by unacceptable levels of soil, air, water or noise pollution, or land instability.'
- 2.3.3 Annex 2 of the NPFF defines pollution as 'anything that affects that quality of the land, **air**, water or soils, which might lead to an adverse impact on human health, the natural environment or general amenity. Pollution can arise from a range of emissions, including smoke, fumes, gases, dust, steam, odour, noise and light'.
- 2.3.4 In addition, paragraph 124 of the Framework states:
 - 'Planning policies should sustain compliance with and contribute towards EU limit values or national objectives for pollutants, taking into account the presence of Air Quality Management Areas and the cumulative impacts on air quality from individual sites in local areas. Planning decisions should ensure that any new development in Air Quality Management Areas is consistent with the local air quality action plan.'
- 2.3.5 No further specific guidance is currently provided in the NPPF or the supporting technical guidance. The additional guidance provided to local authorities on the NPPF set out in

³ Department for Communities and Local Government, (March 2012), National Planning Policy Framework

the Technical Guidance to the National Planning Policy Framework⁴ specifically deals with development in areas at risk of flooding and mineral extraction.

LAQM Policy Guidance LAQM.PG[09]⁵

2.3.6 LAQM.PG[09] provides policy guidance to Local Authorities in carrying out their local air quality management (LAQM) duties under Part IV of the Environment Act 1995 (EA 1995) to achieve implementation of the AQS. The policy guidance outlines the LAQM process including the process for designating AQMAs. The guidance requires that local authorities integrate air quality considerations into the planning process at the earliest possible stage.

LAQM Technical Guidance LAQM.TG[09]⁶

2.3.7 LAQM.TG[09] provides detailed technical guidance to Local Authorities in carrying out their LAQM duties under the Part IV of the EA1995 and sets out the process to be used in reviewing and assessing air quality in their areas. LAGM.TG[09] provides detailed guidance in undertaking updating and screening assessments, and detailed assessments, and how to undertake monitoring and modelling in support of these assessments.

2.4 Local Planning Policy

Wigan Replacement Unitary Development Plan 20067

2.4.1 In 2006 Wigan Council adopted the Wigan Replacement Unitary Development Plan (UDP) (for details reference should be made to ES Chapter 6). The UDP is currently the sole development plan for the whole of Wigan Borough and provides a framework to encourage and stimulate appropriate new development, control the location and quality of development and safeguard environmental quality.

2.4.2 Policy EV1B of the adopted Strategy (2006) states:

"The council will reduce pollution and the effects of pollution by not permitting development which would result in unacceptable levels of air pollution or would have an unacceptable effect on air quality, particularly in or adjacent to the Air Quality Management Areas declared by the Council under the Environment Act 1995. Sensitive development will not be allowed in areas of unacceptable air quality"

Development and Air Quality Supplementary Planning Document, 20078

⁴ Department for Communities and Local Government, (March 2012), *Technical Guidance* to *National Planning Policy Framework*

⁵ DEFRA, (February 2009), Local Air Quality Management, Policy Guidance,

⁶ DEFRA, (February 2009), Local Air Quality Management Technical Guidance LAQM.TG[09]

⁷ Wigan Council, Wigan Replacement Unitary Development Plan, April 2006

2.4.3 The primary function of the Development and Air Quality Supplementary Planning Document is to safeguard the environment by encouraging sustainable development that balances and integrates economic, social and environmental benefits. The document provides guidance to developers on undertaking air quality assessments along with mitigation and compensating measures relating to the significance of the air quality impact associated with a development.

Greater Manchester LTP2 Air Quality Strategy and Action Plan 20069

2.4.4 The Greater Manchester Air Quality Action Plan 2006 has been developed to cover the Greater Manchester area and includes Wigan. The overall aim of the plan is to reduce the effects of poor air quality on the health of people in Greater Manchester. The plan was developed jointly with the Local Transport Plan owing to the fact that the largest proportion of air pollution (in particular nitrogen dioxide) directly experienced by people in the urban areas of the County arises from road traffic.

2.5 National Best Practice and Guidance

EPUK: Planning for Air Quality¹⁰

2.5.1 The EPUK document provides specific non-statutory guidance on air quality and the planning system for new development. The guidance clarifies when an air quality assessment is required, what it should contain and how impacts should be described and assessed. In addition, the guidance sets out a recommended approach to assess the significance of the air quality impacts, taking into account advice issued by the Institute of Air Quality Management (IAQM)¹¹.

IAQM: Guidance on the Assessment of the Impacts of Construction Dust on Air Quality and the Determination of their Significance¹²

2.5.2 The IAQM document provides specific non-statutory guidance on the assessment of the impacts of dust and fine particulate matter (PM₁₀) from demolition and construction activities.

The GLA and London Councils: The Control of Dust and Emissions from Construction and Demolition, 2006¹³

Wigan Council, Development and Air Quality, Supplementary Planning Document, September 2007

⁹ Preston City Council (PCC), (2009) Air Quality Action Plan

¹⁰ Environmental Protection UK (EPUK), (2010), Development Control: Planning for Air Quality (2010 Update)

¹¹ Institute of Air Quality Management (IAQM), (2010), Position on the Description of Air Quality Impacts and the Assessment of their Significance

¹² Institute of Air Quality Management (IAQM), (December 2011), *Guidance on the Assessment of the Impacts of Construction on Air Quality and the Determination of their Significance*

¹³ Greater London Authority and London Councils, (November 2006), *The Control of Dust and Emissions from Construction and Demolition, Best Practice Guidance*

2.5.3 The GLA and LC Best Practice Guidance outlines measures for the control of dust and emissions from demolition and construction activities. Although written for use by the London local authorities it provides a consistent approach covering all aspects of dust control and emissions from construction activities that is applicable throughout the UK.

3 Assessment Methodology

3.1 Study Area

3.1.1 The Study Area includes the site and immediate environs and the wider key transport routes. The area has been defined through reference to the Transport Assessment prepared by Royal Haskoning (Transport Assessment, 24 October 2012, 9W7990, issue R00F). The Study Area includes those roads and major junctions that are considered to be sensitive to an increase in volumes of traffic, and hence may also experience increases in vehicle emissions as shown on Drawing D01.

3.2 Surveys

- 3.2.1 In undertaking the air quality assessment, SGP carried out the following activities:
 - site visit to view the site and its setting,
 - review of development proposals,
 - o review of baseline air quality,
 - o review of WC air quality reports and data,
 - o review of wind speed and direction statistics for Woodford Meteorological Station,
 - o review of current and post-development traffic data and transport assessment,
 - assessment of traffic exhaust emissions using the ADMS-Roads model,
 - o construction dust assessment,
 - o provision of recommendations for mitigation, and
 - o assessment of residual impacts.
- 3.2.2 The site visit was undertaken by Katrina Hawkins, Partner, SGP, and Dewi Lloyd, Associate on the 31st January 2013. At the time of the site visit the weather was clear, 2°C and dry.
- 3.2.3 The baseline data has mainly been gathered through a desk top study and site visit. No additional survey or field work has been undertaken as part of this assessment. In undertaking the assessment reference has been made to the following principal sources of information:

Table 3.1: Information Sources

date and reference	author and source	purpose and information content	
background and topographical information			
Sheet 109, Manchester	Ordnance Survey (OS)	general mapping information including	
	Landranger, 1:50,000	topography, ground features, rights of	
		way, communications etc	
Google Earth (imagery date	aerial photography	site setting	
2009)			
www.environment -	Environment Agency	general information on industrial pollution	
agency.gov.uk; January 2013		sources	
www.magic.gov.uk; January	multi-agency	web-based interactive map containing	
2013		information on nature conservation areas	
air quality information			
2010 and 2011 Air Quality	Wigan Council	update of local authority air quality	
Progress Report for Wigan		monitoring and assessment	
Council, December 2011 (and			
earlier reports)			
www.aqma.defra.gov.uk;	DEFRA	details and maps of AQMAs throughout	
January 2013		UK	
www.defra.gov.uk;	DEFRA	Local Authority air quality management	
January 2013		support; background pollutant mapping	

3.2.4 Detailed traffic data for the Study Area has been provided by Royal Haskoning.

3.3 Key Consultations

3.3.1 Consultations were undertaken with Diana Bell, Senior Scientific Officer, WC to agree the scope and methodology (Appendix A – e-mail correspondence to D Bell).

3.4 Construction Phase Assessment

- 3.4.1 The assessment of the air quality impacts due to the generation and dispersion of dust and PM_{10} during the construction phase has been undertaken in accordance with the current guidance issued by the $IAQM^{10}$. The guidance describes a qualitative assessment methodology to assess the risks of dust and PM_{10} effects from demolition, earthworks and construction activities and from trackout and provides guidance for assessing the significance of the effects. The assessment takes into account the proposed site activities, scale of the site, proximity of sensitive receptors, local topography and the prevailing local wind direction.
- 3.4.2 The impact of fugitive dust at a receptor will depend on the inherent sensitivity of the receptor and the perception of the acceptability of the effects of dust. Receptors may vary in their sensitivity to nuisance dust as follows:

sensitivity high medium low hospitals and clinics schools farms residential areas light and heavy industry retirement homes hi-tech industries food retailers outdoor storage painting and furnishing glasshouses and nurseries food processing horticultural land offices painting and furnishing

Table 3.2: Sensitivity of receptors to nuisance dust

- 3.4.3 In accordance with the IAQM guidance the dust assessment considers potential receptors within 350m of the boundary of the application site, 100m of the route likely to be used by construction vehicles on the public highway and up to 500m from the site entrance as shown on Drawing D02.
- 3.4.4 In addition reference has been made to the GLA and London Council's guidance⁹ which provides mitigation options and best practice guidance to reduce emissions.

3.5 Operational Phase Assessment

- 3.5.1 The assessment of vehicle emissions during the operational phase has been undertaken in accordance with the EPUK guidance⁷.
- 3.5.2 The roads requiring detailed assessment were determined through an initial screening assessment with reference to guidance provided by EPUK⁷ and DMRB¹⁴. This took into account the predicted changes in traffic flows along the roads and junctions within the transport assessment study area and locations of sensitive receptors.
- 3.5.3 The following criteria were used to determine potentially affected roads:
 - significant change in AADT or peak traffic flows >10% outside an AQMA;
 - o significant change in AADT or peak traffic flows >5% within an AQMA;
 - o road alignment changing by 5m of more;
 - o daily traffic flows change by 1,000 AADT or more;
 - o HGV flows change by 200 AADT or more;
 - daily average speed will change by 10 km/hr or more;
 - o peak hour speed will change by 20 km/hr or more.
- $3.5.4~NO_2$ concentrations fall off rapidly with distance from the roadside and the emission source 15 . In accordance with the DMRB guidance only those affected roads / junctions

¹⁴ Design Manual for Roads and Bridges (DMRB), (May 2007), Volume 11 Environmental Assessment, Section 3 Environmental Assessment techniques, Part 1 Air Quality

¹⁵ Air Quality Consultants (AQC), (July 2008), NO₂ Concentrations and Distance from Roads

identified through the screening assessment described above with sensitive receptors (human health and ecological) within 200m are considered further. For AQS pollutants sensitive receptors are defined as those where members of the public are regularly present and are likely to be exposed for a period of time appropriate to averaging period of the objective. Such receptors include residential properties, schools, and hospitals. For buildings the location of relevant exposure is taken as the building façade.

3.5.5 The impact of traffic emissions along the roads identified as requiring detailed assessment were assessed using ADMS-Roads v3.0, supplied by Cambridge Environmental Research Consultants (CERC). ADMS-Roads software is an atmospheric dispersion model developed for assessing the impacts of vehicular emissions. Use of the model for the assessment was agreed in advance with the Senior Scientific Officer of WC. Full details of the modelling and input parameters are provided in Section 7.

3.6 Significance Criteria

3.6.1 A range of approaches and methods are described in the guidance for determining whether air quality effects of a development are significant. The significance evaluation methodologies for nuisance dust and road traffic emissions are derived from relevant DEFRA⁴, EPUK⁷ and IQAM¹⁰ guidance.

Construction Assessment

- 3.6.2 The risk of dust arising in sufficient quantities from a site to causes annoyance and / or health or ecological effects is dependent on:
 - the scale and nature of the works (magnitude of potential dust emissions)
 - o the proximity of receptors, both human and ecological (potential for effects)
- 3.6.3 A site is allocated a 'Dust Emission Class' of high / medium / low for demolition, earthworks, construction and track out according to the following table:

Table 3.3: Dust Emission Classes

Dust	Emission	Description
Class		
Demolitio	n	
large		total building volume >50,000m³; potentially dusty construction material; on-site
		crushing & screening; demolition activities >20m above ground level
medium		total building volume 20,000-50,000 m³; potential dusty construction material;
		demolition activities 10-20m above ground levels
small		total building volume <20,000 m ^{3,} construction material with low potential for dust
		releases; demolition activities <10m above ground; demolition activities during
		wetter months

total site area >10,000 m ³ ; potentially dusty soil type; >10 heavy earth moving
vehicles active at any one time; formation of bunds >8m height; total material
moved >1000,000 tonnes
total site area 2,500-10,000 m ³ ; moderately dusty soil type; 5-10 heavy earth
moving vehicles active at any one time; formation of bunds 4-8m height; total
material moved 20,000-1000,000 tonnes
total site area <2,500 m ³ ; soil type with large grain size; <5 heavy earth moving
vehicles active at any one time; formation of bunds <4m height; total material
moved <10,000 tonnes; earthworks during wetter months
total building volume >100,000 m ³ ; piling; on site concrete batching; sandblasting
total building volume 25,000-100,000 m ³ ; potentially dusty construction material;
piling; on site concrete batching
total building volume <25,000 m ³ ; construction material with low potential for dust
release
>100 HDV trips in any one day; potentially dusty surface materials; unpaved road
length >100m
25-100 HDV trips in any one day; moderately dusty surface materials; unpaved
road length 50-100m
<25 HDV trips in any one day; surface material with low potential for dust release;
unpaved road length <50m
gement is also used to determine the relevant dust emission class for each site

3.6.4 The risk category for demolition, earthworks and construction activities is assessed as follows taking into account the Dust Emission Class and the distance to the nearest receptor:

Table 3.4: Risk Categories - Demolition Activities

Distance to Nearest Receptor (m)		Dust Emission Class		
Dust Soiling and	Ecological	Large	Medium	Small
PM10				
<20	-	high	high	medium
20-100	<20	high	medium	low
100-200	20-40	medium	low	low
200-350	40-100	medium	low	negligible

Note: risk categories are assigned assuming there is no mitigation

Table 3.5: Risk Categories - Earthworks and Construction Activities

Distance to Nearest Receptor (m)		Dust Emission	Dust Emission Class		
Dust Soiling and	Ecological	Large	Medium	Small	
PM10			l'		
<20	-	high	high	medium	
20-50	-	high	medium	low	
50-100	<20	medium	medium	low	
100-200	20-40	medium	low	negligible	
200-350	40-100	low	low	negligible	

Note: risk categories are assigned assuming there is no mitigation

Table 3.6: Risk Categories - Trackout

Distance to Neares	t Receptor (m)	Dust Emission Clas	ss	
Dust Soiling and	Ecological	Large	Medium	Small
PM10	·		'	<u>'</u>
<20	-	high	medium	medium
20-50	<20	medium	medium	low
50-100	20-100	low	low	negligible

Note: risk catagories are assigned assuming there is no mitigation

3.6.5 The sensitivity of the area of the site also needs to be defined. The sensitivity takes into account a number of factors such as the duration for which a dust source may be close to a sensitive receptor, the proximity and number of receptors, presence of natural screening, the sensitivity of the nearby receptors, and in the case of PM₁₀, the local background concentration. The impact significance for each receptor is assessed taking into account the sensitivity of the surrounding area and the risk of the site giving rise to dust effects:

Table 3.7: Significance of Effects for Each Activity with No Mitigation

sensitivity of	risk of site giving rise to dust effects		
surrounding area	high	medium	low
very high	substantial adverse	moderate adverse	moderate adverse
high	moderate adverse	moderate adverse	slight adverse
medium	moderate adverse	slight adverse	negligible
low	slight adverse	negligible	negligible

3.6.6 Once the impact has been described for each activity the overall significance of the air quality impacts during the construction phase is assessed. The overall assessment takes into account a number of aspects, including the significance of the effects for each of the four activities.

Operational Assessment

- 3.6.7 The magnitude and significance of the potential air quality effects are assessed through reference to the IAQM and EPUK guidance. The guidance provides an approach for defining the magnitude of changes and describing the air quality impacts at specific receptors. In undertaking the assessment reference is also made to the WC SPD although it is noted that the SPD refers to now superceded NSCA guidance (replaced by the 2010 EPUK guidance).
- 3.6.8 The magnitude of an impact is described as follows; based on the change in concentration of a pollutant brought about by the scheme as a percentage of the assessment level.

Table 3.8: Definition of Impact Magnitude for changes on pollutant concentration as % of the assessment level

Magnitude of Change	Annual Mean
large	increase / decrease > 10%
medium	increase / decrease 5 – 10%
small	increase / decrease 1 – 5%
imperceptible	increase / decrease <1%

3.6.9 The impact at each relevant receptor is assessed as follows:

Table 3.9: Air Quality Impact Descriptors for changes in annual mean concentrations at a receptor

absolute concentration in relation to objective / limit value	change in concentration		
	small	medium	large
increase with scheme			
above objective / limit value with scheme	slight adverse	moderate adverse	substantial averse
just below objective / limit value with scheme	slight adverse	moderate adverse	moderate adverse
below objective / limit value with scheme	negligible	slight adverse	slight adverse
well below objective / limit value with scheme	negligible	negligible	slight adverse
decrease with scheme			
above objective / limit value without scheme	slight beneficial	moderate beneficial	substantial beneficial
just below objective / limit value without scheme	slight beneficial	moderate beneficial	moderate beneficial
below objective / limit value without scheme	negligible	slight beneficial	slight beneficial
well below objective / limit value without scheme	negligible	negligible	slight beneficial

Notes:

'just below objective / limit value = 90-100% of the assessment value

'well below objective / limit value' = ≤ 75% of the assessment value an imperceptible change is described as negligible

3.6.10Once the impact has been described at each specific receptor the overall significance of the air quality impacts is assessed. This takes into account a number of aspects, including but not limited to, the number of properties / people affected; whether or not an exceedance of an objective or limit value is predicted; the extent to with an objective or limit value is exceeded and the degree of uncertainty.

4 Proposed Development

- 4.1 Full details on the proposed development are provided in the planning application and supporting documentation. Only those aspects of relevance to the air quality assessment are detailed below.
- 4.2 The outline planning application is for the construction of 400 dwellings with associated infrastructure and open space. The wider future development site encompasses a triangular area of land located to the north of the A580 (East Lancs Road) and bound to the east and west by housing along Church Lane and Stone Cross Lane North. The application site itself forms the northern part of this area of land as shown in Drawing D01.
- 4.3 Two access points are to be provided to the development: one to the west off Stone Cross Lane North and one to the east off Church Lane. These are to be provided a priority access T-junctions and will also cater for pedestrians, cyclists and buses. The two junctions are to be connected by an internal link road which will act as a primary distributor road and bus-link. The residential development is to be set-back from the East Lands Road.
- 4.4 The application site encompasses the existing Stirrups Farm which will be demolished.

5 Baseline Conditions

5.1 Site Setting

- 5.1.1 The site comprises an area of open undeveloped land lying on the southern edge of Lowton and to the north of the A580 (East Lancs Road) about 7km from Wigan town centre. The site is bound by residential areas to the north, east and west with a commercial area further west beyond Stone Cross Lane North. Land to the south comprises open agricultural land encompassing Little Lowes Fold and Thompson's farm beyond which lies the A580. Beyond the A580 the land is predominantly agricultural land, with residential to the southeast.
- 5.1.2 Site boundaries and immediate environs are:

Table 5.1: Site Boundaries and Environs

	boundary	neighbouring land
north	hedgerows / fencing onto residential properties	residential properties
east	hedgerows / fencing onto residential properties	residential properties
south	fencing / hedgerows to open land	open agricultural land to A580; agricultural land beyond and residential properties to southeast
west	fencing / hedgerows residential properties	residential properties with Stone Cross Business Park beyond

- 5.1.3 The site is relatively flat, with a gentle slope down from east to west and north to south. Hedgerows run through the site and there are isolated trees throughout, along with three ponds. The site area incorporates the existing Stirrups Farm.
- 5.1.4 Residential properties lie along the majority of the transport routes considered in the Study Area.
- 5.1.5 There are no statutorily designated ecological sites within the Study Area.

5.2 Air Quality Review

- 5.2.1 Reference has been made to the reports prepared by WC in fulfilment under the LAQM reporting requirements, including, but not limited to, WC's 2010 and 2011 Air Quality Progress Report, December 2011.
- 5.2.2 As part of the LAQM review and assessment process WC has declared an Air Quality Management Area (AQMA). A number of areas associated with the M6 motorway,

- junctions on major roads such as the A580 East Lancs. Road and the A49, and busy town centre areas (Wigan and Leigh) have been declared within the AQMA due to emissions from road vehicles.
- 5.2.3 The AQMA includes Church Lane to the east, which is to provide an access point to the site, and the East Lancs Road to the south.
- 5.2.4 The WC 2011 report indicates that further detailed assessment and modelling work is currently on-going in the Wigan and wider Greater Manchester area for NO₂ and PM₁₀.
- 5.3 Background Airborne Pollutant Concentrations
- 5.3.1 Predicted background air quality data were obtained from the DEFRA LAQM website for the 1km x 1km grid squares in which the application site and the key transport routes associated with the application site are located.
- 5.3.2 The predicted data is based on 2010 ambient monitoring and meteorological data and incorporate newly revised information on the age and distribution of vehicles and emission factors. Predicted data is provided by DEFRA for each year from 2011 to 2030. It is widely acknowledged that unusually elevated NO₂ concentrations were experienced in 2010, believed to be due to the unusually cold weather, meaning that the projected background concentrations for NO₂ / NO_x within the data are higher than is to be expected in a typical year. Revised projected data is expected to be issued in early 2013 based on 2011 monitored data.
- 5.3.3 Predicted background concentrations for the proposed start of development (2013) are summarised in the following tables.

Table 5.2: Predicted Background Air Quality Data - 2013

		Concentrations			
Grid Square	Location	NO ₂	NO _x	PM ₁₀	PM2.5
361500 397500	Site	18.77	27.41	15.26	10.26
361500 396500	East Lancs Road (A580)	19.06	27.86	16.28	10.52
362500 396500	A580 and Church Lane Junction	19.49	28.55	15.48	10.47
362500 397500	Church Lane South	18.31	26.58	14.91	10.21
	objective (annual mean)	40	30	30	30

5.3.4 The average background NO₂ concentration for the grid square in which the assessment site is located is predicted to be substantially below the AQS objective at 47% of the objective in 2013, falling to 39% by 2018.

5.3.5 It should be noted that the data are effectively an average concentration across each 1 km square. The pollutant concentrations will therefore be higher close to any significant source, such as main roads, junctions and concentrated habitation including the A580, Church Lane and associated junctions and roundabouts.

5.4 Monitored Air Quality

5.4.1 There are two real-time continuous monitoring stations within the WC area as follows:

Table 5.3: Continuous Monitoring Sites

Location	Grid Ref.	Distance to Site	Pollutants Monitored
Wigan Centre	357815 406022	9.7km NW	NO ₂ , PM10, PM2.5,
			ozone, BTEX
Wigan Leigh	366290 399861	5.5km NE	NO ₂ , PM10

- 5.4.2 Both of these monitors are distant from the site and key transport routes associated with the assessment site. Both monitors are described as providing 'urban background' data.
- 5.4.3 The NO₂ results for these 2 monitors for the period 2008-2010 are detailed below:

Table 5.4: Continuous Monitors – Nitrogen Dioxide Concentrations

Monitor	Annual Mean (μg/m³)		Number of Exceedances of Hourly mean			
	2008	2009	2010	2008	2009	2010
Wigan Centre Urban Background	24	24	26	0	0	0
Wigan Leigh Urban Background	26	25	29	0	0	0

5.4.4 The PM₁₀ results for these 2 monitors for the period 2008-2010 are detailed below:

Table 5.5: Continuous Monitors - Particulate Concentrations

Monitor	Annual Mean (μg/m³)					
	2008 2009 2010					
Wigan Centre	16	18	18			
Urban Background						
Wigan Leigh	17	17	17			
Urban Background						

5.4.5 WC operates a network of diffusion tubes for monitoring NO₂ concentrations across the borough. Of these only one tube is currently, or has been recently, located within the vicinity of the site or the key transport routes within proximity of the site as detailed below:

Table 5.6: Diffusion Tube Monitoring Sites

Ref	Grid Reference	Location	Annual Mean NO ₂ Concentrations (bias adjusted)(μg/m³)		ons (bias
			2009	2010	2011
52	362137 396347	Church Lane, Lowton (A580)	40	46	46

Notes: Data provided in WC air quality progress reports; figures in bold indicate exceedances of the annual mean objective

- 5.4.6 The site forms a 'roadside' location close to the Church Lane / A580 junction and is 3.0m from the kerb of Church Lane.
- 5.4.7 WC historically operated two other tubes in the area. These were tube 158 (NGR: 362747 397290; located on Leburnham Road) and tube 159 (NGR: 363640 396905; located on East Lancs Road). Data is available for up until 2006 when results are reported as 42 μg/m³ and 30 μg/m³ respectively (bias adjusted).

5.5 Industrial Emissions

5.5.1 No Environment Agency Part 1A processes have been identified within the vicinity of either the site that may influence background concentrations of NO₂ or PM₁₀.

5.6 Airborne Dust

5.6.1 Ambient dust deposition rates¹⁶ in rural areas are likely to range between 10 and 50 mg/m²/day, 30 and 80 mg/m²/day in suburban areas and 80 and 160 mg/m²/day in town centre or industrial areas. The immediate site setting to the north, east and west is residential and the A580 lies to the south. Dust deposition rates in the area are therefore likely to tend towards the middle of the typical range for suburban areas, ie, about 50 mg/m²/day.

5.7 Wind speed and direction

5.7.1 The annual wind rose for Manchester Woodford, which lies about 31 km southeast of the site and is the closest location for which appropriate meteorological is available, for 2011, is provided below. This depicts average wind speeds and directions for the whole year.

_

¹⁶ HMSO, (1991), Environmental Effects of Surface Mineral Workings

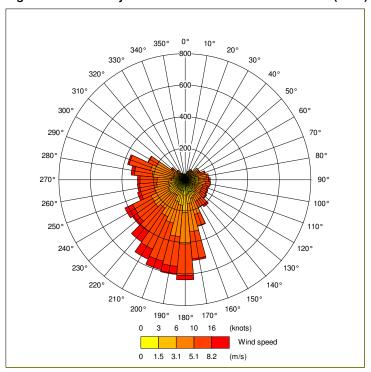


Figure 5.1: Summary Wind Rose – Manchester Woodford (2011)

6 Assessment – Construction Phase

6.1 General Observations

- 6.1.1 Airborne dust occurs when fine particles are disturbed and loosened by physical activity such as breaking, excavating, loading and transport, or by an airstream passing over such materials. It is generally accepted that winds of more than 10 knots across loose fine materials can cause windblown dust emissions.
- 6.1.2 Light winds will transport fine particles already suspended in the atmosphere due to disturbance. In calm conditions any raised dust tends to settle out in the vicinity of the source. In windier conditions the dust may be carried for a greater distance before settling out. The distance the dust will be carried depends on the wind speed, the particle size of the dust, the topography of the site and its surroundings.

6.2 Potential Dust Sources

- 6.2.1 Fugitive dust emissions arising from site activities may result in:
 - · the soiling of dust surfaces,
 - · visible dust plumes,
 - locally elevated PM₁₀ concentrations

- 6.2.2 Site preparation will include demolition of Stirrups Farm. The principal potential sources of airborne dust arising from the proposed development are likely to be:
 - earthworks / site preparation,
 - demolition,
 - loading and tipping,
 - site haulage,
 - · road haulage,
 - materials handling, including soils and building materials,
 - windblow across stripped areas,
 - windblow across stockpiles of construction materials, and
 - concrete batching.
- 6.2.3 Site preparation will primarily consist of vegetation stripping and the localised levelling of uneven ground. The soils in the area are likely to be generally clayey and significant quantities of dust will not normally be raised during these operations.
- 6.2.4 Loading and tipping of potentially dusty materials such as road base and other aggregates may create visible dust emissions although these will be short lived.
- 6.2.5 Site haulage is typically the principal potential dust source on construction sites due to the physical disturbance of particles by vehicle movements over bare soil or loose surfaces. The potential impact is increased over longer distances when speeds tend to be greater and more effort is required to maintain a smooth damp running surface. Depending on the sequence in which the access roads are constructed, the haul distances at the application site may range up to about 750m. Over such distances, and in the absence of appropriate mitigation, moderate quantities of dust may be raised.
- 6.2.6 Dust may also be raised by road haulage due to spillage or windblow from unsheeted loads and due to the adherence of mud and sand to the wheels and underbodies of vehicles leaving the site. This may subsequently be deposited as track-out on roads in the vicinity of the site, and on drying, be raised as dust by the passage of vehicles. In the event of road vehicles travelling across unsurfaced and muddy ground, track out may occur.
- 6.2.7 The handling of soils, construction materials, and aggregates can be a potentially significant dust source, particularly under dry conditions.

- 6.2.8 It is generally accepted that winds blowing at more than 10 knots across loose fine materials can lead to airborne dust emissions. Winds of 10 knots or greater blow for about one third of the time annually, decreasing slightly in summer months. Windblown dust from areas of bare soil and materials stockpiles could therefore arise for prolonged periods.
- 6.2.9 Plant emissions are generally not a significant source of dust except where large numbers of plant are present close to boundaries and then only if not according with current emissions standards or emit black smoke.
- 6.2.10Any concrete batching processes will be regulated if necessary under the Environmental Permitting regime (EPR).
- 6.2.11In summary, the principal potential sources of dust are likely to be site haulage on unmade surfaces, windblow across disturbed surfaces and materials handling.

6.3 Risk of Dust Effects Arising

- 6.3.1 The risk of fugitive dust emissions from the application site resulting in the loss of amenity and / or health or ecological effects is related to:
 - o the nature of the activities being undertaken
 - the duration of these activities
 - o the size of the site
 - o the meteorological conditions (wind speed, direction and rainfall)
 - o the proximity of receptors
 - o the adequacy of mitigation measures applied to reduce or eliminate dust; and,
 - the sensitivity of the receptors to dust.
- 6.3.2 With reference to the IAQM guidance the dust emission classes for the application site are as follows:

Table 6.1: Dust Emission Classes

Activity	Class	Comment
demolition	small	total building volume <20,000m ³
earthworks	large	site area of ~13 ha (>10,000m²)
construction	large	as above
trackout	large	unpaved haulage road lengths within the site potentially >100m,
		surface material potentially has high clay content

6.4 Potentially Sensitive Receptors

- 6.4.1 The site is located to the south of Lowton, with residential areas to the north, east and south, commercial properties to the west and agricultural land and the A580 to the south. Two schools are located to the east of Church Lane and are within 350m of the site. No other schools, hospitals or other potentially highly sensitive receptors are located within 350m of the site.
- 6.4.2 Two public rights of way across the site. There are no known sensitive horticultural land within the vicinity of the site.
- 6.4.3 The potentially sensitive receptors within 350m of the site are as follows:

Table 6.2: Estimated Number of Receptors within 350m of Site Boundary

Distance	Number of	Type of Receptor	Comments
(m)	receptors		
<20	10-100	residential	properties to north, east and west
20-50	10-100	residential	properties to north, east and west
50-100	100-500	residential, school	properties to north, east, south and west, a school to the east
100-350	>500	residential, hotel, commercial, school	properties to north, east, south and west, a school to the east, commercial properties to the west

Note: distance is taken as distance to site boundary

- 6.4.4 No ecological Designated Sites (SPAs, SACs, SSSIs, Ramsar sits etc) have been identified within 100m of the site boundary.
- 6.4.5 Two access / egress routes are to be constructed for the application site; one off Church Lane to the east and one off Stone Cross Lane North to the west. As stated in the Traffic Assessment it is assumed that construction traffic to and from the development will primarily travel via the A580 and Stone Cross Lane.
- 6.4.6 In accordance with the IAQM guidance the assessment has considered receptors within 100m of the roads potentially to be used by the construction traffic up to a distance of 500m from the two site access points. To provide a conservative assessment it has been assumed that some construction transport will also travel via Church Lane; it is assumed that all transport will be directed via the A580.
- 6.4.7 The estimated number of receptors within this area is detailed in Tables 6.3 and 6.4.

Table 6.3: Estimated Number of Receptors Potentially Effected by Trackout from the Stone Cross Lane access

Distance (m)	Number of Receptors	Comments
<20	<10	residential receptors located
20-50	10-100	along Stone Cross Lane and
50-100	10-100	commercial properties to the west

Note: considers receptors within 100m of roads used by construction traffic up to 500m from the site access point assuming traffic is directed to the A580.

Table 6.4: Estimated Number of Receptors Potentially Effected by Trackout from the Church Lane access

Distance (m)	Number of Receptors	Comments
<20	10-100	residential receptors located
20-50	10-100	along Church Lane and adjoining
50-100	100-500	side roads, a school

Note: considers receptors within 100m of roads used by construction traffic up to 500m from the site access point assuming traffic is directed to the A580

- 6.4.8 No ecological Designated Sites (SPAs, SACs, SSSIs, Ramsar sits etc) have been identified within the area that may be affected by trackout.
- 6.5 Assessment of Fugitive Dust and PM₁₀ Impacts
- 6.5.1 Taking into account the number of receptors identified above and the dust emissions classes the risk categories, in the absence of mitigation, of the site are as follows:

Table 6.5: Risk Categories - Dust Soiling and PM₁₀ Effects

Activity	Dust Emission Class	Nearest Receptor	Risk Category
demolition	small	20-100m	low risk
earthworks	large	<20m	high risk
construction	large	<20m	high risk
trackout	large	<20m	high risk

Note: Based on Tables 2, 3 and 4 in the IAQM guidance

- 6.5.2 In summary the assessment indicates that there is a *high* risk of dust soiling and PM₁₀ effects arising from fugitive dust during the construction phase due to the proximity of receptors to the site boundaries and access roads.
- 6.5.3 The overall significance of the potential impacts takes into account other factors such as the sensitivity of the surrounding area, the prevailing wind direction and potential screening provided to nearby receptors and is determined using professional judgement.

- 6.5.4 With reference to Table 6 in the IAQM guidance the sensitivity of the area is considered to be *high* with regards to dust soiling and earthworks and construction works. The sensitivity with regards to demolition works is *medium*. The application site is located on the outskirts of Lowton, there are in the order of 10-100 receptors within 20m of the site boundary many of which are located downwind of the prevailing wind direction. With regards to PM₁₀ the local background PM₁₀ concentrations are predicted to be substantially below the objective and the sensitivity with regards to PM₁₀ effects is *medium*.
- 6.5.5 The overall significance of effects is therefore:

Table 6.6: Summary of Significance (in the absence of mitigation)

Source	Dust Soiling Effects	Ecological Effects	PM ₁₀ Effects
demolition	negligible	none	negligible
earthworks	moderate adverse	none	slight adverse
construction	moderate adverse	none	slight adverse
trackout	moderate adverse	none	slight adverse
overall significance	moderate adverse		

Note: with reference to Table 10 of the IAQM guidance

- 6.5.6 The assessment is based on the distances of the receptors to the boundaries of the site and assess the potential risk of effects during earthworks and construction operations in closest proximity to the site and does not take into account the distance to the primary sources of dust. The development will be undertaken in a phased approach and the risk of adverse impacts on the individual receptors will reduced as operations are more distant.
- 6.5.7 Depending on the phasing of the development, end users of the site could be temporarily affected by airborne dust from uncompleted parts of the development undergoing construction. The significance of any impacts would depend on the proximity of construction activities to the receptor and the degree of screening provided.

7 Assessment – Operational Phase

7.1.1 Initial Screening Assessment

7.1.2 An initial screening assessment was undertaken to determine the areas to be included within the ADMS-Roads model assessment. The changes in traffic flows for each of the roads included within the Transport Study area were assessed as summarised in Appendix B. 60% of the daily traffic is expected to travel via the Stone Cross Lane access

with the remaining 40% travelling via Church Lane. Thereafter the traffic will disperse throughout the road network.

- 7.1.3 Increases of >10% two-way AADT, AM peak and / or PM peak were noted along Stone Cross Lane North and the southern stretch of Church Lane with the development in 2013 and 2018. Increases of >5% two-way AADT, AM peak and / or PM peak were noted along Golbourne Road, Slag Lane, the north section of Church Lane and Kenyon Lane, all of which are within the AQMA. These roads were all therefore included within the detailed assessment. The % changes in two-way AADT along East Lancs Road were all below 5%. This road was however included in the modelling to enable assessment of the impacts at the key junctions with Stone Cross Lane North, Church Lane and Kenyon Lane.
- 7.1.4 The greatest changes are noted along Stone Cross Lane North, where the daily two-way AADT also increases by more than the screening criteria of 1,000 AADT at 1,255 AADT.
- 7.1.5 No other roads within the Transport Study area are predicted to experience an increase in >10% AADT, or to meet the other screening assessment criteria.

7.2 ADMS-Roads Model

- 7.2.1 Based on the results of the screening assessment the detailed assessment using the ADMS-Roads model focused on Stone Cross Lane North, Church Lane, East Lancs Road and Kenyon Lane, and associated junctions / roundabouts:
 - o J1 Church Lane / Stone Cross Lane North / Slag lane / Golborne Road junction
 - o J2 Stone Cross lane North / East Lancs Road junction
 - o J4 Church Lane / East Lancs Road junction
 - J6 Kenyon lane / Newton Road junction
- 7.2.2 The model was run for 108 receptor locations at an elevation of 1.5m. The majority of the receptor locations represent residential building facades located alongside the road network. Additional receptor locations have been included as necessary within the modelled domain to ensure comprehensive coverage. A number of receptors (R101-R108) represent new receptors within the development site. Modelled receptor locations are provided in Drawing D03.
- 7.2.3 The model has been based on individual road links as determined by layout information, observations of traffic flows, traffic lights and idling traffic. Each road, junction and roundabout has been sub-divided into detailed links and modelled with one-way traffic flows. Comprehensive turning Annual Average Daily Traffic (AADT) traffic data has been provided by Royal Haskoning for each of the road links and junctions for each of the

modelled scenarios. The provided data has been used to generate appropriate detailed data for input into the ADMS-Roads model.

- 7.2.4 Estimates of HGV / LDV splits have been provided by Royal Haskoning.
- 7.2.5 The traffic data included data for the committed developments of:
 - redevelopment of former colliery site at Bickeshaw South, Wigan
 - Leigh Sports Village, Phase III development, Leigh
 - Parsonage site, Leigh
- 7.3 For full details on the basis on which the traffic data has been derived reference should be made to the ES Chapter 10: Transportation and the Transport Assessment. All the traffic data is based on 2011 surveyed flows.
- 7.4 Traffic speeds used in the model are based on site observations and DEFRA guidance^{iv}, particularly with respect to junctions and traffic lights. The prediction of future traffic speeds input into the model has taken into account proposed off-site highways works associated with the committed developments considered in the transport assessment. The model also takes into account the proposals that form part of the development including the two priority T-junctions at Stone Cross lane North and Church Lane and the proposed additional land capacity at the A580 / Stone Cross Lane North junction.
- 7.5 Traffic exhaust emission data has been taken from the EFT v5.1 emissions factor database which was released in August 2012 and imported into ADMS-Roads v3.0.
- 7.5.1 The model was run using hourly sequential meteorological data for 2011 for the Meteorological Station at Woodford, Manchester weather station (NGR: 389805 382479), which lies about 31km to the southeast of the site. This is the nearest appropriate location for which ADMS weather data is available.
- 7.5.2 The general model conditions are summarised below:

Table 7.1: ADMS-Roads Model Input Parameters

Variables	Model Input
Surface roughness at source	0.5 m
Minimum Monin-Obukhov length for stable	10 m
conditions	
Receptor location	x, y coordinates, z = 1.5m (see Appendix C)
Emissions	NO _x , PM ₁₀

Variables	Model Input
Emission factor	EFT 5.1 (2VC)
Meteorological data	1 year (2011) hourly sequential data from Manchester Woodford (NGR 389805 382479)
Emission profiles	average throughout 24 hours
Receptors	selected receptors as provided on Drawing D03
Model output	Long-term annual mean NO _x concentrations Long-term annual mean PM ₁₀ concentrations

7.5.3 The model has been run for the following scenarios:

Table 7.2: ADMS Model Scenarios

Scenario	Year	Description
Α	2011	baseline traffic data, model verification
В	2013	baseline prior to development
С	2013	'Do Minimum' - without development (includes 'committed development')
D		'Do Something' – development and committed development
E	2018	'Do Minimum' - without development (includes 'committed development')
F		'Do Something' – development and committed development

7.5.4 The model has been used to predict concentrations of 'road-NO_x' and PM₁₀ associated with the traffic. Receptor PM₁₀ concentrations have been calculated by adding the predicted road contribution PM₁₀ to the DEFRA predicted background PM₁₀ concentrations (for 2013 and 2018) for the grid squares in which the receptors are located. Nitrogen dioxide concentrations at the receptors have been calculated using the road-NO_x to NO₂ calculator provided on the DEFRA LAQM website (version 3.2, dated August 2012) and the predicted background DEFRA concentrations. Contributions to annual mean NO_x and PM₁₀ from road sources were not removed from the background concentrations as not all road sources within each grid square have been specifically modelled in the assessment. The version of the ADMS-Roads model used predicts the indirect contributions of PM₁₀ as well as the direct vehicle exhaust emissions.

7.6 Model Verification

7.6.1 Where possible it is usual practice to verify the model in accordance with DEFRA guidance^{1.} This is done by comparing modelled data with monitored data and, where necessary, deriving an adjustment factor. The only available monitored data within the Study Area is the WC diffusion tube data for location D52 close to the junction of Church

- Lane and the A580. The model was run for 2011 using the 2011 traffic data and verified against the 2011 WC monitored data in accordance with guidance provided in TG[09].
- 7.6.2 The modelled concentration at D52 was within 10% of the monitored data and an adjustment factor of 1.17 was calculated.

7.7 ADMS-Roads Results

- 7.7.1 The full results for the modelling for NO_2 (NO_x) and PM_{10} for 2011, 2013 and 2018 are detailed in Appendix C.
- 7.7.2 To aid the assessment the receptors have been considered in each of the key areas within the modelled domain: Stone Cross Lane North, Church Lane, East Lancs Road, Newton Road and Kenyon Lane and associated junctions.
- 7.7.3 The <u>maximum</u> modelled increases in post-development NO₂ and PM₁₀ concentrations at the receptors in each area are assessed in accordance with the guidance provided by EPUK and are summarised below.

Table 7.3: Summary of Maximum Modelled Increases in NO₂ in each Key Area - 2013 and 2018

	Maximum Change	Magnitude of	Predicted Façade	Significance
	in Annual Mean	Change	Concentration	
	Concentration (%) ¹		(μg/m³)	
2013				
Scenario D				
Stone Cross Lane	+1.68	small	29.57	negligible
North				
Church Lane	+1.58	small	32.03	negligible
A580	+0.55	imperceptible	41.65	negligible
Newton Road	+0.72	imperceptible	39.42	negligible
Junction Church Lane /	+1.50	small	34.07	negligible
Stone Cross Lane (J1)				
Junction Church Lane /	+1.25	small	40.08	sight adverse
A580 (J4)				
Junction A580 /	+0.43	imperceptible	38.77	negligible
Newton Road (J5)				
Junction Newton Rd /	+0.78	imperceptible	37.02	negligible
Kenyon Lane (J6)				
2018				
Scenario F				

	Maximum Change in Annual Mean Concentration (%) ¹	Magnitude of Change	Predicted Façade Concentration (µg/m³)	Significance
Stone Cross Lane North	+1.30	small	22.2	negligible
Church Lane	+1.25	small	23.82	negligible
A580	+0.45	imperceptible	29.95	negligible
Newton Road	+0.72	imperceptible	39.42	negligible
Junction Church Lane / Stone Cross Lane (J1)	+1.23	small	25.33	negligible
Junction Church Lane / A580 (J4)	+1.03	small	32.18	negligible
Junction A580 / Newton Road (J5)	+0.40	imperceptible	25.25	negligible
Junction Newton Rd / Kenyon Lane (J6)	+0.63	imperceptible	29.29	negligible

^{1:} maximum change in annual mean concentration as % of assessment level

Table 7.4: Summary of Maximum Modelled Increases in PM_{10} in each Key Area – 2013 and 2018

	Maximum Change	Magnitude of	Predicted Façade	Significance
<u>'</u>	in Annual Mean	Change	Concentration	
	Concentration (%) ¹		(μg/m³)	
2013				
Scenario D				
Stone Cross Lane	+0.31	imperceptible	16.46	negligible
North				
Church Lane	+0.29	imperceptible	16.44	negligible
A580	+0.12	imperceptible	18.24	negligible
Newton Road	+0.16	imperceptible	18.00	negligible
Junction Church Lane /	+0.28	imperceptible	16.98	negligible
Stone Cross Lane (J1)				
Junction Church Lane /	+0.27	imperceptible	18.15	negligible
A580 (J4)				
Junction A580 /	+0.09	imperceptible	18.02	negligible
Newton Road (J5)				
Junction Newton Rd /	+0.14	imperceptible	17.58	negligible
Kenyon Lane (J6)				
2018				<u> </u>
Scenario F				

^{2:} maximum NO_2 concentration based on predicted background concentrations for grid squares in which receptors are located.

	Maximum Change in Annual Mean Concentration (%) ¹	Magnitude of Change	Predicted Façade Concentration (µg/m³)	Significance
Stone Cross Lane North	+0.26	imperceptible	15.53	negligible
Church Lane	+0.23	imperceptible	15.41	negligible
A580	+0.10	imperceptible	16.95	negligible
Newton Road	+0.13	imperceptible	16.82	negligible
Junction Church Lane / Stone Cross Lane (J1)	+0.23	imperceptible	15.95	negligible
Junction Church Lane / A580 (J4)	+0.21	imperceptible	17.19	negligible
Junction A580 / Newton Road (J5)	+0.06	imperceptible	16.27	negligible
Junction Newton Rd / Kenyon Lane (J6)	+0.12	imperceptible	16.78	negligible

^{1:} maximum change in annual mean concentration as % of assessment level

7.7.4 The maximum predicted % changes in façade NO₂ and PM₁₀ concentrations do not necessarily occur at the receptors with the highest predicted façade concentrations within the modelled domain. Tables 7.5 and 7.6 summarise the maximum receptor concentrations within each key area with the development.

Table 7.5: Summary of Maximum Façade NO₂ Concentrations in each Key Area – 2013 and 2018

Area	Receptor Ref	Predicted Façade	Descriptor ¹
		Concentration (µg/m³)	
2013			
Scenario C			
Stone Cross Lane North	52	32.21	below
Church Lane	7	17.30	well below
A580	60	41.65	above
Newton Road	99	39.42	just below
Junction Church Lane / Stone	34	34.07	below
Cross Lane (J1)			
Junction Church Lane / A580	63	45.34	above
(J4)			
Junction A580 / Newton Road	96	40.18	above
(J5)			
Junction Newton Rd / Kenyon	68	46.94	above
Lane (J6)			

^{2:} maximum PM10 concentration based on predicted background concentrations for grid squares in which receptors are located.

Area	Receptor Ref	Predicted Façade Concentration (μg/m³)	Descriptor ¹
Site	106	24.39	well below
2018			
Scenario E			
Stone Cross Lane North	53	22.23	well below
Church Lane	7	25.29	well below
A580	60	29.95	well below
Newton Road	99	28.24	well below
Junction Church Lane / Stone	34	25.33	well below
Cross Lane (J1)			
Junction Church Lane / A580	63	32.57	below
(J4)			
Junction A580 / Newton Road	96	28.70	well below
(J5)			
Junction Newton Rd / Kenyon	68	33.54	below
Lane (J6)			
Site	106	18.55	well below

^{1:} With reference to EPUK descriptors

Table 7.6: Summary of Maximum Façade PM₁₀ Concentrations in each Key Area – 2013 and 2018

Area	Receptor Ref Predicted Façade		Descriptor ¹
		Concentration (μg/m³)	
2013			
Scenario C			
Stone Cross Lane North	52	18.07	well below
Church Lane	7	17.30	well below
A580	59	18.50	well below
Newton Road	99	18.00	well below
Junction Church Lane / Stone	34	16.98	well below
Cross Lane (J1)			
Junction Church Lane / A580	63	18.69	well below
(J4)			
Junction A580 / Newton Road	96	18.06	well below
(J5)			
Junction Newton Rd / Kenyon	68	18.50	well below
Lane (J6)			
Site	106	17.12	well below
2018			
Scenario E			
Stone Cross Lane North	53	15.79	well below
Church Lane	7	16.21	well below
A580	60	16.95	well below

Area	Receptor Ref	Predicted Façade Concentration (μg/m³)	Descriptor ¹
Newton Road	99	16.31	well below
Junction Church Lane / Stone Cross Lane (J1)	34	15.95	well below
Junction Church Lane / A580 (J4)	63	17.23	well below
Junction A580 / Newton Road (J5)	96	16.90	well below
Junction Newton Rd / Kenyon Lane (J6)	68	17.10	well below
Site	106	16.31	well below

^{1:} With reference to EPUK descriptors

- 7.7.5 *Small* magnitudes of change are predicted at a number of receptors at the Church Lane / East Lancs Road junction with the development in 2013. The predicted façade concentrations at a number of these locations are predicted to be above the objective (i.e. above 40 μg/m³) resulting in **slight adverse** impacts. The maximum change in this area is predicted at receptors R4 and R5 at 1.25% and 1.23% (as % of the assessment level) respectively. These receptors are located on the northern side of Church Lane between the A580 and Fulwood Road. At a number of these receptors the modelling predicts exceedances of the objective in 2013 without the development, with a potential movement from 'just below' the objective to 'above' the objective only predicted at one receptor, R3.
- 7.7.6 Small magnitudes of change are also predicted at a number of receptors located along Church Lane and Stone Cross Lane North and at the Stone Cross Lane North / Church Lane junction. The greatest predicted changes within the modelled domain are at receptors in these areas up to a maximum of 1.68%. The predicted façade concentrations are all 'below' the objective (several described as 'below' the objective at the junction with the majority being 'well below' along the roads) with resulting **negligible** impacts. Elsewhere within the modelled domain the magnitudes of change are predicted to be *imperceptible* with **negligible** impacts.
- 7.7.7 In addition to those noted above at the Church Lane / A580 junction, exceedances of the objective are predicted at the Kenyon Lane / Newton Road junction, and at one receptor at the Newton Road / A580 junction without the development in 2013. Predicted changes at these locations with the development are all less than 1%, *imperceptible*, with resulting negligible impacts.
- 7.7.8 Reduced impacts are predicted in 2018. *Small* changes are predicted at a number of receptors at the Church Lane / A580 junction, and along Church Lane and Stone Cross

Lane North, although at a reduced number to in 2013. Impacts are predicted as being **negligible** due to reducing background concentrations and all façade concentrations being 'below' the objective.

- 7.7.9 *Imperceptible* magnitudes of change are predicted for PM₁₀ concentrations at all the modelled receptor facades, with resulting **negligible** impacts.
- 7.7.10The new residential receptors to be introduced as a result of the development are set back from the A580. Predicted NO₂ and PM₁₀ concentrations within the development area are substantially below the objectives. The local air quality within the application site is therefore considered to be suitable for the proposed development.
- 7.7.11 Based on the results of the ADMS modelling it was not considered that further modelling of the roads within the wider Transport Study area was required.

8 Mitigation

8.1 Construction Phase

- 8.1.1 In the absence of adequate mitigation, the estimated risk of adverse impacts due to dust soiling at nearby residential properties is *moderate* and is *slight* for PM₁₀ impacts. However, the impact of construction activities will be readily controlled through the implementation of standard best practice in respect of dust control and site management, as detailed in GLA Best Practice Guidance.
- 8.1.2 As an over-riding requirement, should winds carry visible dust towards the site boundaries to the north, east and west, the operations giving rise to the dust in that part of the site will be modified or suspended until more suitable conditions pertain, or until effective dust control measures are implemented.
- 8.1.3 Haulage across the site will be restricted to designated haul routes, which will as far as possible be located towards the centre of the site, and away from sensitive receptors. Wherever possible, haul routes will be prepared with compacted stone or other similar material. Once the internal access roads are constructed, haulage will wherever possible take place on these routes.
- 8.1.4 The surface of the internal haul routes will be inspected daily, and any potholes or other defects will be made good.

- 8.1.5 Further standard good practices in respect of haulage include:
 - o avoiding abrupt changes in horizontal and vertical alignment,
 - o grading and maintenance of unsurfaced routes,
 - o setting an appropriate site speed limit,
 - o even loading of vehicles to avoid spillages,
 - o regular removal of spilled material from site routes,
 - o dust suppression by regular spraying in dry conditions,
 - inspection and cleaning of vehicles leaving site, through provision of a wheel wash area,
 equipped with a high pressure hose and an adequate water supply near the site
 entrance,
 - o cleaning of any track out or other deposits from the adjacent highways.
- 8.1.6 A suitable supply of water for dust suppression purposes will be maintained, under all climatic conditions, throughout the construction works. Dust suppression will be implemented through regular spraying of the haul routes, stockpiled material and any freshly exposed earthworks.
- 8.1.7 Other more general matters and the management of the site can affect the likelihood of significant dust emissions. These include:
 - minimisation of drop heights during tipping and loading,
 - o loading and tipping in the lee of existing structures and stockpiles,
 - o maintenance of equipment to ensure its efficient operation,
 - use of clean water for dust suppression, to avoid re-circulating fine material,
 - high standards of house-keeping to minimise track-out and wind blown dust, and
 - o effective staff training in respect of the causes and prevention of dust.
- 8.1.8 No additional mitigation measures to those standard measures utilised for construction are considered necessary.
- 8.1.9 The effectiveness of the mitigation measures outlined above will, to a large extent, rely on the actions and behaviour of contractors. The procedures and measures for the control of dust during the construction phase will be incorporated into a Construction Environmental Management Plan (CEMP) to be used by contractors. The CEMP will be developed and agreed with the Local Authority, and other regulators / consultees as required, prior to the commencement of the construction activities.

8.2 Operational Phase

- 8.2.1 The vehicle emissions assessment demonstrates that the proposed development will have a slight adverse impact on air quality (with regards to NO₂) at a small number of receptors at the Church Lane / East Lancs Road junction due to the generation of additional traffic. Appropriate mitigation measures will therefore be implemented in order to reduce the extent of any adverse impact as far as is reasonably possible.
- 8.2.2 The key mitigation measure will be to encourage the use of means of transport other than private car. The site already benefits from access to existing public transport (local bus routes) and the proposals include for further public transport enhancement. These proposals are detailed in the ES Chapter 10: Transportation. Cycle and pedestrian facilities will also be provided as part of the development. The development is supported by a comprehensive Travel Plan which will positively encourage travel by sustainable modes as detailed in the ES Volume 3: Technical Appendix 10.2.

9 Residual Effects Assessment

9.1 Construction Phase

9.1.1 The foregoing standard good working practices and additional mitigation measures are generally accepted by the Government as providing effective control against the impact of airborne dust and fine particulates. The implementation of the recommended mitigation measures will result in the following residual impacts:

Table 9.1: Summary of Significance (with mitigation)

Source	Dust Soiling Effects	Ecological Effects	PM ₁₀ Effects		
demolition	negligible	none	negligible		
earthworks	slight adverse	none	negligible		
construction	slight adverse	none	negligible		
trackout	slight adverse	none	negligible		
overall significance	negligible to slight adverse				

Note: with reference to Tables 7 and 9 of the IAQM guidance

9.1.2 The risk of adverse impacts arising due to dust soiling during the construction phase, with mitigation, may remain **slight adverse** when works are being undertaken in close proximity to the site boundaries. However, as construction activities move away from the sensitive boundaries the risk will reduce to **negligible**. Any such adverse impacts will be short lived.

9.2 Operational Phase

9.2.1 The detailed vehicle emissions assessment predicts slight adverse impacts due to increasing traffic associated with the development at a small number of receptors at the Church Lane / East Lancs Road junction. Negligible impacts are predicted elsewhere. The implementation of the Travel Plan will minimise the potential traffic impacts, and hence local air quality impacts, of the proposed development. Therefore it is considered that the development would have a negligible residual impact.

10 Monitoring

10.1 Construction Phase

- 10.1.1Site monitoring will ensure that dust and PM₁₀ emissions from the earthworks and construction activities are adequately controlled. Visual inspections of site activities, dust controls, site conditions and access roads will be undertaken at the start of operations and subsequently at least twice more throughout the working day and a daily record maintained. Where visible dust emissions are observed being carried towards the sensitive site boundaries to the west, south, east and northwest, the Site Manager will act promptly to identify the source(s) of the dust and take the necessary corrective action.
- 10.1.2The Site Manager will instruct the modification, reduction or suspension of any operation or process causing visible dust emissions crossing the site boundary until such time as the situation has been resolved.
- 10.1.3 Site staff will be instructed to inform the Site Manager whenever visible dust emissions are observed, or appear likely to occur, as a result of any operation or process.
- 10.1.4All complaints will be recorded and reported to the Site Manager, who will investigate the circumstances and ensure that any necessary corrective measures are taken. A prompt response will be made to the complainant and a record, including copies of all correspondence and telephone filenotes, will be made in the complaints register to be held at the site office.
- 10.1.5WC will be advised, in writing within one week, of any dust complaint received together with details of the findings of the investigation and any corrective measures which have been taken.
- 10.1.6In the event of any substantiated complaint, the dust management scheme will be reviewed and amended as necessary.

10.2 Operational Phase

10.2.1 No monitoring is required during the operational phase.

11 Assumptions

- 11.1 The vehicle emission assessment has been undertaken utilising recently published predicted background air quality data and vehicle emission rates and is therefore considered to be robust. The predicted background air quality data is based on 2010 monitored data and is widely acknowledged as being higher than may be expected in future years due to specific conditions occurring during 2010 and hence provides a conservative assessment. A recently issued NO_x to NO₂ converter which takes into account the new background and emission rate data has also been used in the assessment.
- 11.2 Predicted traffic has been provided by Royal Haskoning and is based on measured traffic flows in 2011, and takes into account committed development. Traffic speeds used in the model are based on field observations and local speed limits. The assessment has been undertaken using traffic data for the wider development of 670 dwellings, and hence is highly conservative with regards to the specific application for 400 dwellings.
- 11.3 WC NO₂ monitoring data is available in the immediate vicinity of the road network affected by the development, albeit for one location, enabling model verification utilising local modelled and measured data. The model output data is within expectations given the nature of the road network and predicted AADT increases.
- 11.4 The model has been run using meteorological data from Manchester Woodford, which provides the closest available data. Local variations in weather and wind direction are however likely to exist.

12 Summary and Conclusions


- 12.1 The air quality assessment has considered the potential impacts associated with fugitive dust and vehicle exhaust emissions during the construction and operational phases of the project.
- 12.2 An assessment has been undertaken of the potential for fugitive dust that may arise during the earthworks and construction phases of the project, and from track-out from the

access points, to impact nearby sensitive receptors through both soiling and human health effects. The assessment takes into account the size of the development and the sensitivity of the surrounding area. Through the incorporation of standard dust mitigation measures during the construction works no unacceptable impacts on human health, amenity or ecological receptors have been identified.

- 12.3 The air quality assessment has also incorporated an assessment of the potential impacts from additional vehicle exhaust emissions associated with the development. The assessment is based on traffic data generated in support of the transport assessment. The assessment assumes completion of the development by 2018 and takes into account existing committed development within the area. No unacceptable impacts on human health, amenity or ecological receptors have been identified through the additional traffic associated with the development.
- 12.4 Overall the effects are not predicted to be significant with respect to air quality with no significant residual effects.

DRAWINGS

Site access points

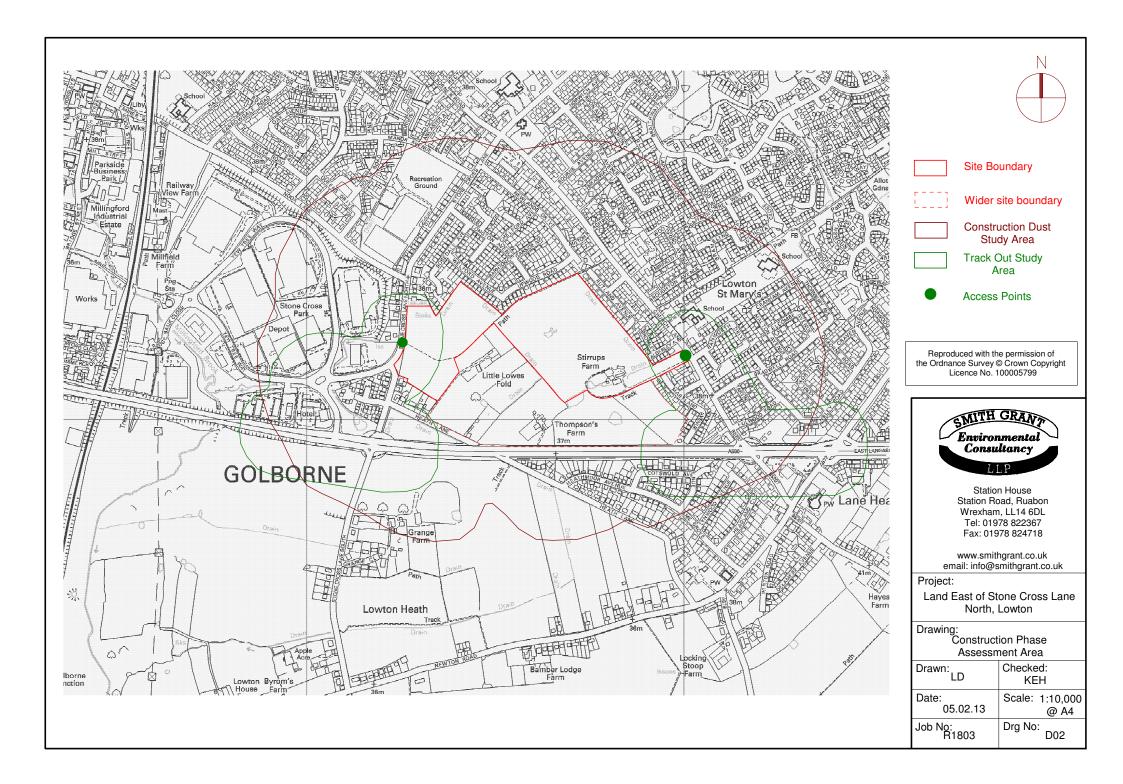
Roads assessed with regards to vehicle emissions

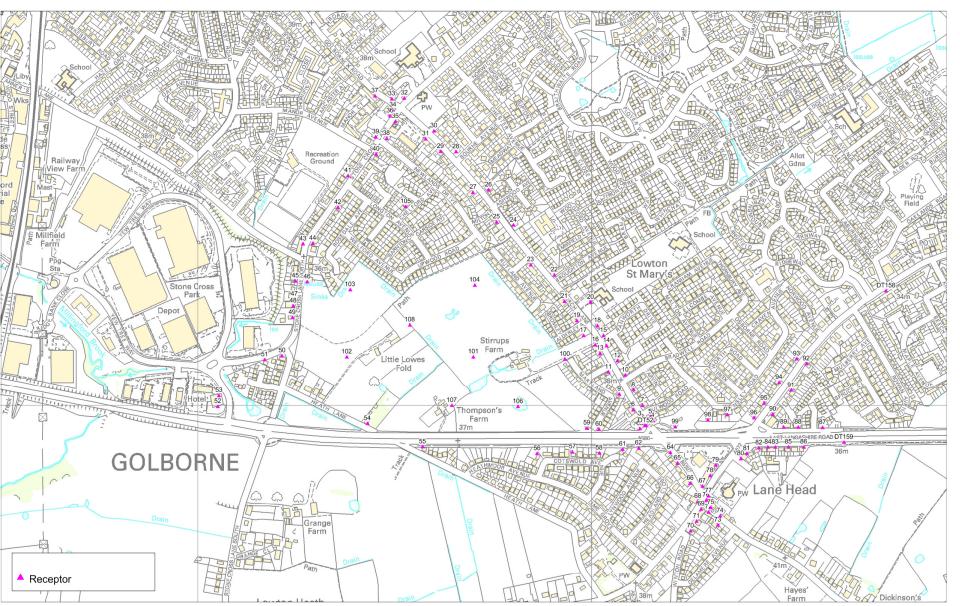
Site boundary

Reproduced with the permission of the Ordnance Survey © Crown Copyright Licence No. 100005799

Station House Station Road, Ruabon Wrexham, LL14 6DL Tel: 01978 822367 Fax: 01978 824718

www.smithgrant.co.uk email: info@smithgrant.co.uk


Project:


Land East Of Stone Cross Lane North, Lowton

Drawing:

Study Area

Drawn:	Checked:
LD	KEH
Date: 05.02.13	Scale:
Job No:	Drg No:
R1803	D01

Reproduced with the permission of the Ordnance Survey © Crown Copyright Licence No 100005799

Station House, Station Road Ruabon, Wrexham. LL14 6DL Tel: 01978 822367 Fax: 01978 824718

www.smithgrant.co.uk email: consult@smithgrant.co.uk

Project: Stonecross Lane

Drawing:

Receptors	
Drawn by: DL	Checked: KEH
Date: 04/02/13	Scale: NTS
Job No: R1803	Drg No: Receptors

APPENDIX A

Correspondence with Wigan Council

From: <D.Bell@wigan.gov.uk>

To: <katrina.hawkins@smithgrant.co.uk>
Date sent: Wed, 9 Jan 2013 16:50:07 +0000

Subject: RE: Land East of Stone Cross Lane North, Wigan

Hi Katrina

Please find attached monitoring data up to 2011, 2012 should be available February/ March 2013, there are no further reports available yet. The scope of work meets our requirements.

If you need any more information, please do not hesitate to call.

Regards

Diana

Diana Bell
Senior Scientific Officer
Environmental Protection
Places: Economy, Waste and Infrastructure
Wigan Council
PO Box 100
Wigan
WN1 3DS

tel 01942 489631

www.wigan.gov.uk www.twitter.com/wigancouncil www.facebook.com/WiganCouncilOnline

----Original Message-----

From: Katrina Hawkins [mailto:katrina.hawkins@smithgrant.co.uk]

Sent: Wed 09 January 2013 11:00

To: Bell, Diana

Cc: Rawsthorne, Dave

Subject: Land East of Stone Cross Lane North, Wigan

Diana

You may recall we spoke a few months ago about a possible air quality assessment of a site in Wigan.

We have now been instructed to carry out an air quality assessment of different site - Lane East of Stone Cross Lane North, Lowton. Planning ref: A/12/77592. An Environmental Statement has already been submitted for this development but did not include an air quality assessment. I understand that the planning officer Dave Rawsthorne has advised that an air quality assessment would be required.

I have attached our proposed scope of work for the assessment. I have also attached a plan detailing the highway area considered within the transport assessment, and hence which would be considered within our initial screening assessment. I would be grateful if you could advise whether this meets your requirements.

I have a copy of the WC 2011 Air Quality Progress Report. I would also be grateful if you were able to forward any later reports or monitoring data if the report is not yet available.

Many thanks

Katrina

Katrina Hawkins BSc MSc MIEMA MIAQM CEnv Partner

Smith Grant LLP Station House Station Road Ruabon Wrexham LL14 6DL

Tel: 01978 822367 Fax: 01978 824718 Mobile: 07843 256071

E-mail: katrina.hawkins@smithgrant.co.uk

>>Corporate Disclaimer<<

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager.

Email may be automatically logged, monitored and/or recorded for legal purposes.

As a public body, the Council may be required to disclose this email or any response to it under the Freedom of Information Act 2000 unless the information in it is covered by one of the exemptions in the Act.

This footnote also confirms that this email has been swept for the presence of computer viruses.

APPENDIX B

Percentage Change in AADT on Key Transport Links

R1803 Land East of Stone Cross Lane North, Lowton Appendix B: % Changes in AADT on Key Transport Road Links

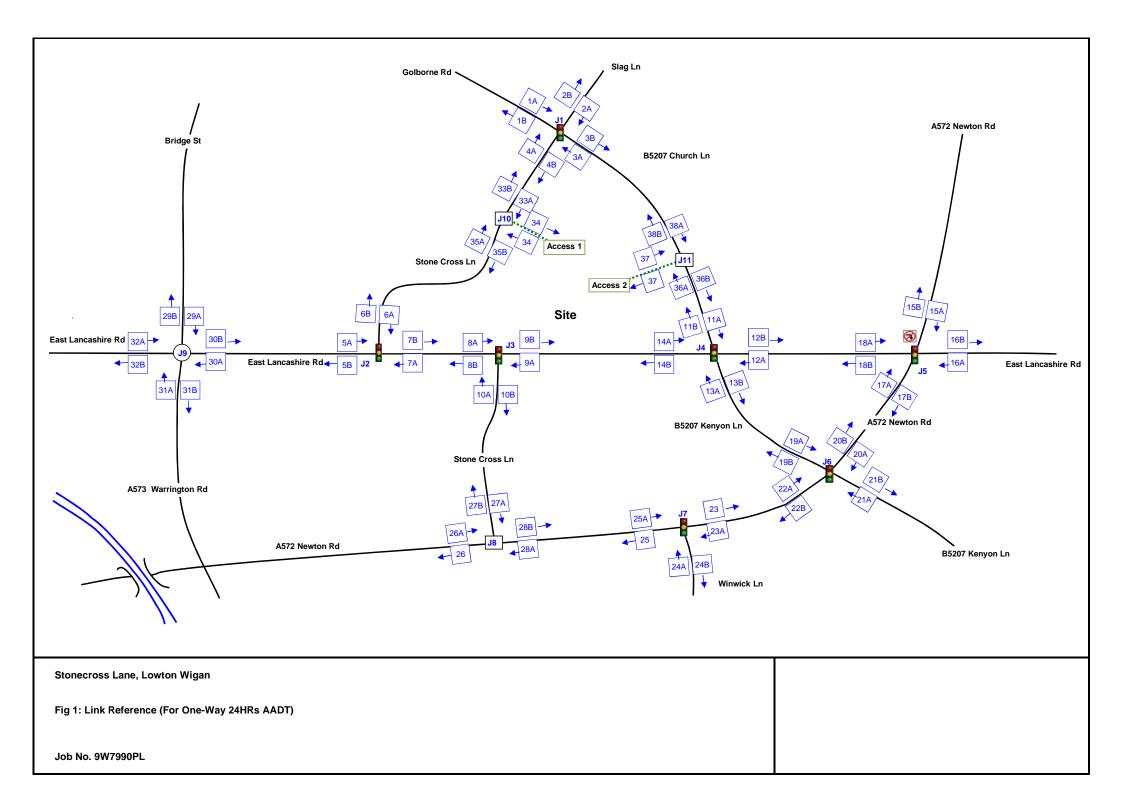
Link		24hr AADT	(one-Way)	
Ref.	LVs	HVs	Tot.	HV%
1A	4239	185	4424	4.2%
1B	4421	189	4610	4.1%
2A	5898	72	5970	1.2%
2B	6039	81	6120	1.3%
3A 3B	3692 2974	162	3854 3140	4.2% 5.3%
4A	3537	167 54	3591	1.5%
4A 4B	3933	36	3969	0.9%
5A	14519	774	15293	5.1%
5B	15238	950	16187	5.9%
6A	5423	203	5625	3.6%
6B	2943	135	3078	4.4%
7A	13271	851	14122	6.0%
7B	15032	743	15774	4.7%
8A	15032	743	15774	4.7%
8B	13271	851	14122	6.0%
9A	12191	851	13042	6.5%
9B	14600	743	15342	4.8%
10A	2363	5	2367	0.2%
10B	1715	5	1719	0.3%
11A	3275	180	3455	5.2%
11B 12A	3431	158	3588	4.4%
12A 12B	12607 14581	914 819	13521 15400	6.8% 5.3%
12B 13A	2336	819	2417	3.4%
13B	2885	108	2993	3.4%
14A	14798	743	15540	4.8%
14B	12119	833	12952	6.4%
15A	5966	320	6285	5.1%
15B	5673	284	5956	4.8%
16A	14095	1089	15184	7.2%
16B	16528	968	17496	5.5%
17A	6977	419	7395	5.7%
17B	6779	468	7247	6.5%
18A	14554	824	15378	5.4%
18B	12612	932	13543	6.9%
19A	2844	104	2948	3.5%
19B	2331	77	2408	3.2%
20A	6702	473	7175	6.6%
20B	6941	428	7368	5.8%
21A 21B	3220 2835	63 81	3283 2916	1.9%
21B 22A	6556	455	7010	6.5%
22B	7215	509	7723	6.6%
23A	6697	459	7156	6.4%
23B	5732	374	6106	6.1%
24A	3952	288	4240	6.8%
24B	6408	396	6804	5.8%
25A	2685	108	2793	3.9%
25B	1193	86	1279	6.7%
26A	3765	135	3900	3.5%
26B	1846	86	1931	4.4%
27A	1580	18	1598	1.1%
27B	2057	27	2084	1.3%
28A	1265	72	1337	5.4%
28B	2707	113	2820	4.0%
29A	4153	135	4288	3.1%
29B	4649	180	4829	3.7%
30A	11467	860	12326	7.0%
30B	14168	1004	15171	6.6%
31A	2448	63	2511	2.5%
31B 32A	3191 16476	50 1044	3240 17520	1.5% 6.0%
32A 32B	12537	869	17520	6.5%
32B 33A	4154	279	4433	6.3%
33B	3123	230	3353	6.8%
34A	0	0	0	0.0%
34B	0	0	0	0.0%
35A	3123	230	3353	6.8%
35B	4154	279	4433	6.3%
36A	3431	158	3588	4.4%
36B	3275	180	3455	5.2%
37A	0	0	0	0.0%
37B	0	0	0	0.0%
38A	3275	180	3455	5.2%

20	13/2018 Wit	h Proposed		ent
Link		24hr AADT	(one-Way)	
Ref.	LVs	HVs	Tot.	HV%
1A	4524	185	4709	3.9%
1B	4691	189	4880	3.9%
2A	6375	72	6447	1.1%
2B	6535	81	6616	1.2%
3A	4039	162	4201	3.9%
3B	3276	167	3442	4.8%
4A	3956	54	4010	1.3%
4B	4393	36	4429	0.8%
5A 5B	14818 15711	774 950	15592 16660	5.0% 5.7%
6A	6151	203	6354	3.2%
6B	3469	135	3604	3.7%
7A	13576	851	14426	5.9%
7B	15366	743	16108	4.6%
8A	15366	743	16108	4.6%
8B	13576	851	14426	5.9%
9A	12468	851	13318	6.4%
9B	14907	743	15650	4.7%
10A	2396	5	2400	0.2%
10B	1746	5	1751	0.3%
11A	3693	180	3873	4.6%
11B	3786	158	3943	4.0%
12A	12978	914	13891	6.6%
12B	14989	819	15808	5.2%
13A	2513	81	2594	3.1%
13B	3119	108	3227	3.3%
14A	15105	743	15848	4.7%
14B	12396	833	13228	6.3%
15A 15B	6028 5740	320 284	6347 6024	5.0% 4.7%
16A	14403	1089	15492	7.0%
16B	16869	968	17836	5.4%
17A	6977	419	7395	5.7%
17B	6779	468	7247	6.5%
18A	14962	824	15785	5.2%
18B	12982	932	13914	6.7%
19A	3078	104	3182	3.3%
19B	2509	77	2585	3.0%
20A	6702	473	7175	6.6%
20B	6941	428	7368	5.8%
21A	3353	63	3416	1.8%
21B	2991	81	3072	2.6%
22A	6601	455	7055	6.4%
22B	7293	509	7802	6.5%
23A	6776	459	7235	6.3%
23B	5777	374	6151	6.1%
24A	4007	288	4295	6.7%
24B	6501	396	6897	5.7%
25A	2699	108	2807	3.8%
25B 26A	1203 3789	86 135	1288 3924	6.6% 3.4%
26B	1863	86	1948	4.4%
27A	1611	18	1629	1.1%
27B	2090	27	2117	1.1%
28A	1275	72	1347	5.3%
28B	2722	113	2834	4.0%
29A	4169	135	4304	3.1%
29B	4683	180	4863	3.7%
30A	11940	860	12799	6.7%
30B	14467	1004	15471	6.5%
31A	2453	63	2516	2.5%
31B	3214	50	3264	1.5%
32A	16755	1044	17799	5.9%
32B	12952	869	13821	6.3%
33A	4613	279	4892	5.7%
33B	3542	230	3771	6.1%
34A	1148	0	1148	0.0%
34B	985	0	985	0.0%
35A	3649	230	3878	5.9%
35B	4882	279	5161	5.4%
36A	3786	158	3943	4.0%
36B 37A	3693 765	180 0	3873 765	4.6% 0.0%
37A 37B	657	0	657	0.0%
38A	3577	180	3757	4.8%
00/1	55,,	.50	3936	4.0%

2013/2018 % change in toal vehicles			Comments	Link included in ADMS-Roads model		
Link		24hr AADT	` ,	T	Comments	
Ref.	with	without 4424	difference	%	A 0 1 4 A	
1A 1B	4709 4880	4424 4610	285 271		AQMA AQMA	yes
2A	6447	5970			AQMA	yes
2B	6616	6120	495		AQMA	yes
3A	4201	3854	347		AQMA	yes
3B	3442	3140	302		AQMA	yes
4A	4010	3591	419			yes
					non-AQMA	yes
4B	4429	3969	460		non-AQMA	yes
5A	15592	15293	299	1.96		yes
5B	16660	16187	473	2.92	40144	yes
6A	6354	5625	729		non-AQMA	yes
6B	3604	3078	526		non-AQMA	yes
7A	14426	14122	304	2.16		yes
7B	16108	15774	334	2.12		yes
BA .	16108	15774	334	2.12		yes
3B	14426	14122	304	2.16		yes
9A	13318	13042	277	2.12		yes
9B	15650	15342	308	2.01		yes
0A	2400	2367	33	1.40		
10B	1751	1719	32	1.84		
11A	3873	3455	418		AQMA	yes
11B	3943	3588	355	9.89	AQMA	yes
12A	13891	13521	371	2.74		yes
12B	15808	15400	408	2.65		yes
13A	2594	2417	178	7.36	AQMA	yes
13B	3227	2993	234	7.83	AQMA	yes
14A	15848	15540	308	1.98		yes
14B	13228	12952	277	2.14		yes
15A	6347	6285	62	0.99		yes
15B	6024	5956	67	1.13		yes
16A	15492	15184	309	2.03		yes
16B	17836	17496	341	1.95		yes
17A	7395	7395	0	0.00		yes
17B	7247	7247	0	0.00		yes
18A	15785	15378	408	2.65		yes
18B	13914	13543	371	2.74		yes
19A	3182	2948	234		AQMA	yes
19B	2585	2408	178		AQMA	yes
20A	7175	7175	0	0.00	/ tQtvi/ t	yes
20B	7368	7368	0	0.00		yes
21A	3416	3283	133	4.04		yes
21B	3072	2916	156		non-AQMA	yes
22A	7055	7010	45	0.64	HOH-AQIVIA	yes
22B	7802	7723	78	1.01		
23A	7235	7156	78	1.09		
23B	6151	6106		0.74		
24A	4295	4240				
24B	6897	6804		1.37		
25A	2807	2793		0.52		
25B	1288	1279				
26A	3924	3900				
26B	1948	1931		0.88		
27A	1629	1598		1.98		
27B	2117	2084		1.59		
28A	1347	1337		0.71		
28B	2834	2820		0.52		
29A	4304	4288		0.38		
29B	4863	4829				
30A	12799	12326	473	3.84		
30B	15471	15171	299	1.97		
31A	2516	2511	5	0.20		
31B	3264	3240	24	0.73		
32A	17799	17520	278	1.59		
32B	13821	13406		3.10		
33A	4892	4433			non-AQMA	yes
33B	3771	3353			non-AQMA	yes
34A	1148	0				yes
34B	985	0				yes
35A	3878	3353			non-AQMA	yes
35B	5161	4433			non-AQMA	yes
36A	3943	3588				yes
36B	3943	3455			non-AQMA	yes
87A	765	0		>10	HOH-AQIVIA	
		0				yes
37B	657				non ACMA	yes
38A 38B	3757 3936	3455 3588			non-AQMA non-AQMA	yes yes

Note:

- Link traffic data provided by Royal Haskoning DHV


 1. For link no.refer to attached Fig. 1.

 2. AADT = Annual Average Daily Traffic

 3. LV refers to light duty vehicles (Cars and Light Goods vehicles).
- 4. HV refers to heavey duty vehicles (Buses, Coaches and all HGVs).
 5. AADT in the above Tables were derived by factoring 2011 peak hour turning count flows. The factor was derived using 2011 ATC data for Stone Cross Lane North.
 6. Growth factor not appl;ied to traffic date; hence 2013 data is same as 2018

R1803/R1803-R01-Appendix B 11th February 2013

APPENDIX C

ADMS-Roads Model Input Data

٩,	۵-	n	2	ri	'n	Α

Scenario A		Average speed		Vehicle Count
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
L1 L3	light duty vehicle	5	446 13613	
12B	light duty vehicle	40	13748	574
14A_Q	light duty vehicle	10	14058	
Church_Q	light duty vehicle	10	6481	271
L5	light duty vehicle	5	6035	
L6 Keynon	light duty vehicle	10	5144 5221	
L2	light duty vehicle	20	77	4
L4	light duty vehicle	10	11470	
14B	light duty vehicle	50	11192	
12A	light duty vehicle	20	11547	482
Keynon_Q Keynon_S	light duty vehicle	10 50	5221 5891	219 246
Newton_3_Q	light duty vehicle	10	12844	
Newton_3	light duty vehicle	50	12844	536
Newton_2_SB	light duty vehicle	30	6206	
Newton 2 NB A	light duty vehicle	10	6458	
Newton_2_NB_B 16B	light duty vehicle	50	6458 15872	
L14	light duty vehicle	10	324	
15A_Q	light duty vehicle	10	5387	225
15B	light duty vehicle	40	4977	208
15	light duty vehicle	45	10364	
L13	light duty vehicle	20	2412 11309	102 472
L18 L10	light duty vehicle light duty vehicle	30	15548	
L15	light duty vehicle	40	2565	108
L9	light duty vehicle	30	6372	267
L16	light duty vehicle	30	5063	212
L7 L20	light duty vehicle light duty vehicle	20	86 12609	5 526
L19	light duty vehicle	20	432	
16A	light duty vehicle	50	13041	544
L12	light duty vehicle	40	11466	479
church2	light duty vehicle	50	6481	271
church2_Q	light duty vehicle light duty vehicle	50 40	6481	271 0
access2 church1 Q1	light duty vehicle	50	6481	
church1	light duty vehicle	50	6481	271
church1_Q2	light duty vehicle	10	6440	269
slag	light duty vehicle	30	10495	
golborne Nstonecross 1 Q1	light duty vehicle	30	8501 5900	355 247
Nstonecross_1_Q1 Nstonecross_1	light duty vehicle	50	5900	
Nstonecross_1_Q2	light duty vehicle	10	5900	
access1	light duty vehicle	40	0	
Nstonecross_2_Q1	light duty vehicle	10	5900	
Nstonecross_2 Nstonecross_2_Q2	light duty vehicle	40 10	5900 5900	247 247
L21	light duty vehicle light duty vehicle	40	1130	
L22	light duty vehicle	30	12213	
L25	light duty vehicle	50	12816	535
L26	light duty vehicle	30	1242	53
L31 L23	light duty vehicle	30 40	4770 2867	200 120
L28	light duty vehicle	50	10966	
L24	light duty vehicle	30	1161	49
L27	light duty vehicle	30	1044	45
L29	light duty vehicle	30	11264	470
L33 ELR 3 EB	light duty vehicle	40 80	9863 13860	412 579
ELR 3 WB	light duty vehicle	80	11264	470
5B	light duty vehicle	50	13833	
9B	light duty vehicle	50	13860	579
Sstonecross	light duty vehicle	50	3628	152
ELR_1_EB ELR_1_WB	light duty vehicle light duty vehicle	80	13343 13833	
L32	light duty vehicle	20	1103	47
5A	light duty vehicle	50	13343	
L1	heavy duty vehicle	5	9	
L3	heavy duty vehicle	5	734	
12B 14A Q	heavy duty vehicle heavy duty vehicle	40 10	819 743	
Church_Q	heavy duty vehicle	10	338	
L5	heavy duty vehicle	5	329	15
L6	heavy duty vehicle	10	175	
Keynon	heavy duty vehicle	40 20	189	
L2 L4	heavy duty vehicle heavy duty vehicle	10	14 900	
14B	heavy duty vehicle	50	833	
12A	heavy duty vehicle	20	914	39
Keynon_Q	heavy duty vehicle	10	189	9
Keynon_S	heavy duty vehicle	50	144	
Newton_3_Q Newton_3	heavy duty vehicle heavy duty vehicle	10 50	964 964	
Newton_3 Newton_2_SB	heavy duty vehicle	30	468	21
Newton_2_NB_A	heavy duty vehicle	10	419	
Newton_2_NB_B	heavy duty vehicle	40	419	18
16B	heavy duty vehicle	50	968	
L14 15A_Q	heavy duty vehicle	10	18 320	
15A_Q 15B	heavy duty vehicle heavy duty vehicle	10	320 284	
15	heavy duty vehicle	35	604	
L13	heavy duty vehicle	20		

Scenario A

Scenario A		1.		V-1-1-0
Source name	Vehicle category	Average speed (km/hr)	Total Vehicles	Vehicle Count (hourly average)
L18	heavy duty vehicle	30	711	31
L10	heavy duty vehicle	30	950	41
L15	heavy duty vehicle	40	171	8
L9	heavy duty vehicle	30	396	18
L16	heavy duty vehicle	30	302	14
L7	heavy duty vehicle	20	23	2
L20	heavy duty vehicle	20	1075	46
L19	heavy duty vehicle	20	14	2
16A	heavy duty vehicle	50	1089	46
L12	heavy duty vehicle	40	909	39
church2	heavy duty vehicle	50	338	15
church2_Q	heavy duty vehicle	50	338	15
access2	heavy duty vehicle	40	0	0
church1_Q1	heavy duty vehicle	50	336	15
church1	heavy duty vehicle	50	336	15
church1_Q2	heavy duty vehicle	10	329	15
slag	heavy duty vehicle	30	153	7
golborne	heavy duty vehicle	30	374	17
Nstonecross_1_Q1	heavy duty vehicle	10	509	22
Nstonecross_1	heavy duty vehicle	50	509	22
Nstonecross_1_Q2	heavy duty vehicle	10	509	22
access1	heavy duty vehicle	40	0	0
Nstonecross_2_Q1	heavy duty vehicle	10	509	22
Nstonecross_2	heavy duty vehicle	40	509	22
Nstonecross_2_Q2	heavy duty vehicle	10	509	22
L21	heavy duty vehicle	40	95	5
L22	heavy duty vehicle	30	679	29
L25	heavy duty vehicle	50	743	32
L26	heavy duty vehicle	30	0	1
L31	heavy duty vehicle	30	414	18
L23	heavy duty vehicle	40	140	7
L28	heavy duty vehicle	50	810	35
L24	heavy duty vehicle	30	41	3
L27	heavy duty vehicle	30	0	1
L29	heavy duty vehicle	30	851	36
L33	heavy duty vehicle	40	805	35
ELR_3_EB	heavy duty vehicle	80	743	32
ELR_3_WB	heavy duty vehicle	80	851	36
5B	heavy duty vehicle	50	950	41
9B	heavy duty vehicle	50	743	32
Sstonecross	heavy duty vehicle	50	10	1
ELR_1_EB	heavy duty vehicle	80	774	33
ELR_1_WB	heavy duty vehicle	80	950	41
L32	heavy duty vehicle	20	5	1
5A	heavy duty vehicle	50	774	33
L40	light duty vehicle	20	15706	655
L40	heavy duty vehicle	10	1027	44
Keynon_S_Q	light duty vehicle	10	5891	246
Keynon_S_Q	heavy duty vehicle	10	144	7

R1803: Land East of Stone Cross Lane North, Lowton R1803-R01-Appendix C ADMS-Roads Model Input Data

Scenario B

Scenario B				
		Average speed		Vehicle Count
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
Source name	light duty vehicle	5	446	20
L3	light duty vehicle	5	14353	599
12B	light duty vehicle	40	14581	609
14A Q	light duty vehicle	10	14798	618
	light duty vehicle	10	6706	280
Church_Q L5	light duty vehicle	5	6260	262
L6	light duty vehicle	10	5144	215
Keynon	light duty vehicle	40	5221	219
L2	light duty vehicle	20	77	4
L4	light duty vehicle	10	12530	523
14B	light duty vehicle	50	12119	506
12A	light duty vehicle	20	12607	526
Keynon_Q	light duty vehicle	10	5221	219
Keynon_S	light duty vehicle	50	6055	253
Newton_3_Q	light duty vehicle		13771	575 575
Newton_3	light duty vehicle	50	13771	575
Newton_2_SB	light duty vehicle	30	6779	283
Newton_2_NB_A	light duty vehicle	10	6977	292
Newton_2_NB_B	light duty vehicle	40	6977	292
16B	light duty vehicle	50	16528	690
L14	light duty vehicle	10	324	15
15A_Q	light duty vehicle	10	5966	250
15B	light duty vehicle	40	5673	237
15	light duty vehicle	45	11639	486
L13	light duty vehicle	20	2775	117
L18	light duty vehicle	30	11779	492
L10	light duty vehicle	30	16204	676
L15	light duty vehicle	40	2898	122
L9	light duty vehicle	30	6891	288
L16	light duty vehicle	30	5642	236
<u>L7</u>	light duty vehicle	20	86	5
L20	light duty vehicle	20	13663	570
L19	light duty vehicle	20	432	19
16A	light duty vehicle	50	14095	588
L12	light duty vehicle	40	12526	523
church2	light duty vehicle	50	6706	280
church2_Q	light duty vehicle	10	6706	280
access2	light duty vehicle	40	0	
church1_Q1	light duty vehicle	10	6706	
church1	light duty vehicle	50	6706	
church1_Q2	light duty vehicle	10	6666	
slag	light duty vehicle	30	11937	498
golborne	light duty vehicle	30	8660	362
Nstonecross_1_Q1	light duty vehicle	10	7277	304
Nstonecross_1	light duty vehicle	50	7277	304
Nstonecross_1_Q2	light duty vehicle	10	7277	304
access1	light duty vehicle	40	0	1

Scenario B

		A		Valida Oarra
		Average speed	-	Vehicle Count
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
Nstonecross_2_Q1	light duty vehicle	10	7277	304
Nstonecross_2	light duty vehicle	40	7277	304
Nstonecross_2_Q2	light duty vehicle	10	7277	304
L21	light duty vehicle	40	1566	66
L22	light duty vehicle	30	12953	541
L25	light duty vehicle	50	13556	566
L26	light duty vehicle	30	1476	63
L31	light duty vehicle	30	5711	239
L23	light duty vehicle	40 50	3344	140
L28	light duty vehicle		11894	497
L24	light duty vehicle	30	1377	58
L27	light duty vehicle	30	1044	45
L29	light duty vehicle	30	12191	509
L33	light duty vehicle	40	10575	442
ELR_3_EB	light duty vehicle	80	14600	609
ELR_3_WB	light duty vehicle	80	12191	509
5B	light duty vehicle	50	15238	636
9B	light duty vehicle	50	14600	609
Sstonecross	light duty vehicle	50	4078	171
ELR_1_EB	light duty vehicle	80	14519	606
ELR_1_WB	light duty vehicle	80	15238	636
L32	light duty vehicle	20	1319	56
5A	light duty vehicle	50	14519	606
L1	heavy duty vehicle	5	9	1
L3	heavy duty vehicle	5	734	32
12B	heavy duty vehicle	40	819	35
14A_Q	heavy duty vehicle	10	743	32
Church_Q	heavy duty vehicle	10	338	15
L5	heavy duty vehicle	5	329	15
L6	heavy duty vehicle	10	175	8 9
Keynon	heavy duty vehicle	40	189	9
L2	heavy duty vehicle	20	14	2
L4	heavy duty vehicle	10	900	39
14B	heavy duty vehicle	50	833	36
12A	heavy duty vehicle	20	914	39
Keynon_Q	heavy duty vehicle	10	189	9 7
Keynon_S	heavy duty vehicle	50	144	/
Newton_3_Q	heavy duty vehicle	10	964	41
Newton_3	heavy duty vehicle	50	964	41
Newton_2_SB	heavy duty vehicle	30	468	21
Newton_2_NB_A	heavy duty vehicle	10	419	18
Newton_2_NB_B	heavy duty vehicle	40	419	18
16B	heavy duty vehicle	50	968	41
L14	heavy duty vehicle	10	18	2
15A_Q	heavy duty vehicle	10	320	14
15B	heavy duty vehicle	40	284	13
15	heavy duty vehicle	35	604	26
L13	heavy duty vehicle	20	113	6
L18	heavy duty vehicle	30	711	31
L10	heavy duty vehicle	30	950	41
L15	heavy duty vehicle	40	171	8
L9	heavy duty vehicle	30	396	18

Scenario B

Scenario B				
		Averege apped		Vehicle Count
0	Vahiala aatawawi	Average speed	Total Vahialaa	
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
L16	heavy duty vehicle	30	302 23	14
L7	heavy duty vehicle	20	_	2
L20	heavy duty vehicle	20	1075	46 2
L19	heavy duty vehicle	20	14	
16A	heavy duty vehicle	50	1089	46
L12	heavy duty vehicle	40	909	39
church2	heavy duty vehicle	50	338	15
church2_Q	heavy duty vehicle	10	338	15
access2	heavy duty vehicle	40	0	1
church1_Q1	heavy duty vehicle	10	338	15
church1	heavy duty vehicle	50	338	15
church1_Q2	heavy duty vehicle	10	329	15
slag	heavy duty vehicle	30	153	7
golborne	heavy duty vehicle	30	374	17
Nstonecross_1_Q1	heavy duty vehicle	10	509	22
Nstonecross_1	heavy duty vehicle	50	509	22
Nstonecross_1_Q2	heavy duty vehicle	10	509	22
access1	heavy duty vehicle	40	0	1
Nstonecross_2_Q1	heavy duty vehicle	10	509	22
Nstonecross_2	heavy duty vehicle	40	509	22
Nstonecross_2_Q2	heavy duty vehicle	10	509	22
L21	heavy duty vehicle	40	95	5
L22	heavy duty vehicle	30	679	29
L25	heavy duty vehicle	50	743	32
L26	heavy duty vehicle	30	0	1
L31	heavy duty vehicle	30	414	18
L23	heavy duty vehicle	40	140	7
L28	heavy duty vehicle	50	810	35
L24	heavy duty vehicle	30	41	3
L27	heavy duty vehicle	30	0	1
L29	heavy duty vehicle	30	851	36
L33	heavy duty vehicle	40	805	35
ELR_3_EB	heavy duty vehicle	80	743	32
ELR_3_WB	heavy duty vehicle	80	851	36
5B	heavy duty vehicle	50	950	41
9B	heavy duty vehicle	50	743	32
Sstonecross	heavy duty vehicle	50	10	1
ELR_1_EB	heavy duty vehicle	80	774	33
ELR_1_WB	heavy duty vehicle	80	950	41
L32	heavy duty vehicle	20	5	1
5A	heavy duty vehicle	50	774	33
L40	light duty vehicle	20	18491	771
L40	heavy duty vehicle	10		44
Keynon_S_Q	light duty vehicle	10		253
Keynon_S_Q	heavy duty vehicle	10		7
	. , ., .			

R1803: Land East of Stone Cross Lane North, Lowton R1803-R01-Appendix C ADMS-Roads Model Input Data

Scenario C

Scenario C				
		Average speed		Vehicle Count
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
L1	light duty vehicle	5	493	22
L3	light duty vehicle	5	14612	610
12B	light duty vehicle	40	14989	626
14A Q	light duty vehicle	10	15105	630
Church Q	light duty vehicle	10	7479	313
L5	light duty vehicle	5	6986	292
L6	light duty vehicle	10	5555	232
Keynon	light duty vehicle	40	5632	236
L2	light duty vehicle	20	77	4
L4	light duty vehicle	10	12901	539
14B	light duty vehicle	50	12396	518
12A	light duty vehicle	20	12978	542
Keynon Q	light duty vehicle	10	5632	236
Keynon_S	light duty vehicle	50	6344	265
Newton 3 Q	light duty vehicle	10	13894	580
Newton 3	light duty vehicle	50	13894	580
Newton_2_SB	light duty vehicle	30	6779	283
Newton 2 NB A	light duty vehicle	10	6977	292
Newton_2_NB_B	light duty vehicle	40	6977	292
16B	light duty vehicle	50	16869	704
L14	light duty vehicle	10	324	15
15A Q	light duty vehicle	10	6028	252
15B	light duty vehicle	40	5740	240
15	light duty vehicle	45	11768	491
L13	light duty vehicle	20	2842	119
L18	light duty vehicle	30	12120	506
L10	light duty vehicle	30	16545	690
L15	light duty vehicle	40	2898	122
L9	light duty vehicle	30	6891	288
L16	light duty vehicle	30	5704	239
L7	light duty vehicle	20	86	5
L20	light duty vehicle	20	13971	583
L19	light duty vehicle	20	432	19
16A	light duty vehicle	50	14403	601
L12	light duty vehicle	40	12806	535
church2	light duty vehicle	50	7479	313
church2_Q	light duty vehicle	10	7479	313
access2	light duty vehicle	40	1422	60
church1_Q1	light duty vehicle	10	7355	307
church1	light duty vehicle	50	7355	307
church1_Q2	light duty vehicle	10	7315	
slag	light duty vehicle	30	12910	
golborne	light duty vehicle	30	9215	
Nstonecross_1_Q1	light duty vehicle	10	8155	
Nstonecross_1	light duty vehicle	50	8155	
Nstonecross_1_Q2	light duty vehicle	10		
access1	light duty vehicle	40	2134	90

Scenario C

Scenario C				
		Average speed		Vehicle Count
Course name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
Source name	light duty vehicle	10	8531	356
Nstonecross_2_Q1 Nstonecross_2	light duty vehicle	40	8531	356
Nstonecross_2_Q2	light duty vehicle	10	8531	356
		40	1822	77
L21	light duty vehicle	30	12996	543
L22 L25	light duty vehicle	50	13863	543
L26	light duty vehicle	30	1505	
		30	6709	64 281
L31	light duty vehicle		3782	
L23	light duty vehicle	40		159
L28	light duty vehicle	50	11929	498
L24	light duty vehicle	30	1647	70
L27	light duty vehicle	30	1044	45
L29	light duty vehicle	30	12468	521
L33	light duty vehicle	40	10582	442
ELR_3_EB	light duty vehicle	80	14907	622
ELR_3_WB	light duty vehicle	80	12468	521
5B	light duty vehicle	50	15711	656
9B	light duty vehicle	50	14907	622
Sstonecross	light duty vehicle	50	4142	174
ELR_1_EB	light duty vehicle	80	14818	618
ELR_1_WB	light duty vehicle	80	15711	656
L32	light duty vehicle	20	1347	57
5A	light duty vehicle	50	14818	618
L1	heavy duty vehicle	5	9	1
L3	heavy duty vehicle	5	734	32
12B	heavy duty vehicle	40	819	35
14A_Q	heavy duty vehicle	10	743	
Church_Q	heavy duty vehicle	10	338	15
L5	heavy duty vehicle	5	329	15
L6	heavy duty vehicle	10	175	8
Keynon	heavy duty vehicle	40	189	9
L2	heavy duty vehicle	20	14	2
L4	heavy duty vehicle	10	900	39
14B	heavy duty vehicle	50	833	36
12A	heavy duty vehicle	20	914	39
Keynon_Q	heavy duty vehicle	10	189	9
Keynon_S	heavy duty vehicle	50		
Newton_3_Q	heavy duty vehicle	10		41
Newton_3	heavy duty vehicle	50		41
Newton_2_SB	heavy duty vehicle	30		
Newton_2_NB_A	heavy duty vehicle	10		
Newton_2_NB_B	heavy duty vehicle	40	419	
16B	heavy duty vehicle	50	968	
L14	heavy duty vehicle	10	18	
15A_Q	heavy duty vehicle	10		
15B	heavy duty vehicle	40	284	13
15	heavy duty vehicle	35		
L13	heavy duty vehicle	20	113	
L18	heavy duty vehicle	30		31
L10	heavy duty vehicle	30	950	41
L15	heavy duty vehicle	40	171	8
L9	heavy duty vehicle	30	396	18

Scenario C

Scenario C				
		Average speed		Vehicle Count
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
L16	heavy duty vehicle	30	302	14
L7	heavy duty vehicle	20	23	2
L20	heavy duty vehicle	20	1075	
L19	heavy duty vehicle	20	14	2
16A	heavy duty vehicle	50	1089	46
L12	heavy duty vehicle	40	909	39
church2	heavy duty vehicle	50	338	15
church2_Q	heavy duty vehicle	10	338	15
access2	heavy duty vehicle	40	0	1
church1_Q1	heavy duty vehicle	10	338	15
church1	heavy duty vehicle	50	338	15
church1_Q2	heavy duty vehicle	10	329	15
slag	heavy duty vehicle	30	153	7
golborne	heavy duty vehicle	30	374	17
Nstonecross_1_Q1	heavy duty vehicle	10	509	22
Nstonecross 1	heavy duty vehicle	50	509	22
Nstonecross 1 Q2	heavy duty vehicle	10	509	22
access1	heavy duty vehicle	40	0	1
Nstonecross 2 Q1	heavy duty vehicle	10	509	22
Nstonecross 2	heavy duty vehicle	40	509	22
Nstonecross_2_Q2	heavy duty vehicle	10	509	22
L21	heavy duty vehicle	40	95	5
L22	heavy duty vehicle	30	679	29
L25	heavy duty vehicle	50	743	32
L26	heavy duty vehicle	30	0	1
L31	heavy duty vehicle	30	414	18
L23	heavy duty vehicle	40	140	7
L28	heavy duty vehicle	50	810	35
L24	heavy duty vehicle	30	41	3
L27	heavy duty vehicle	30	0	1
L29	heavy duty vehicle	30	851	36
L33	heavy duty vehicle	40	805	35
ELR_3_EB	heavy duty vehicle	80	743	32
ELR 3 WB	heavy duty vehicle	80	851	36
5B	heavy duty vehicle	50	950	41
9B	heavy duty vehicle	50	743	32
Sstonecross	heavy duty vehicle	50		
ELR 1 EB	heavy duty vehicle	80		
ELR 1 WB	heavy duty vehicle	80		
L32	heavy duty vehicle	20		
5A	heavy duty vehicle	50		33
L40	light duty vehicle	20		
L40	heavy duty vehicle	10		44
Keynon S Q	light duty vehicle	10		
Keynon_S_Q	heavy duty vehicle	10		7

R1803: Land East of Stone Cross Lane North, Lowton R1803-R01-Appendix C ADMS-Roads Model Input Data

Scenario D

Scenario D				
		Average speed		Vehicle Count
Course name	Vohiolo cotogory		Total Vahialaa	
Source name	light duty vehicle	(km/hr) 5	Total Vehicles 446	(hourly average) 20
L3		5	14353	
	light duty vehicle	40	14581	609
12B	light duty vehicle	10	14798	
14A_Q		10	6706	
Church_Q L5	light duty vehicle	5	6260	
L6	light duty vehicle	10	5144	
	light duty vehicle	40	5221	219
Keynon L2		20	77	4
L2 L4	light duty vehicle		12530	•
14B	light duty vehicle	10	12119	
12A	light duty vehicle	20	12607	526
			5221	219
Keynon_Q	light duty vehicle	10 50		
Keynon_S	light duty vehicle	10	6055 13771	575
Newton_3_Q	light duty vehicle	50		
Newton_3	light duty vehicle		13771	
Newton 2 NB A	light duty vehicle	30	6779	
Newton_2_NB_A	light duty vehicle	10	6977	292
Newton_2_NB_B	light duty vehicle	40 50	6977	292
16B	light duty vehicle		16528	
L14	light duty vehicle	10	324	
15A_Q	light duty vehicle	10	5966	
15B	light duty vehicle	40	5673	
15	light duty vehicle	45	11639	
L13	light duty vehicle	20	2775	
L18	light duty vehicle	30	11779	
L10	light duty vehicle	30	16204	676
L15	light duty vehicle	40	2898	
L9	light duty vehicle	30	6891	288
L16	light duty vehicle	30	5642	
L7	light duty vehicle	20	86 13663	
L20	light duty vehicle	20		
L19	light duty vehicle	20	432 14095	
16A L12	light duty vehicle	50	12526	
		40		
church2	light duty vehicle	50	6706	
church2_Q	light duty vehicle	10		
access2	light duty vehicle	40	0	
church1_Q1	light duty vehicle	10	6706	
church1	light duty vehicle	50	6706	
church1_Q2	light duty vehicle	10	6666	
slag	light duty vehicle	30	11937	
golborne	light duty vehicle	30	8660	
Nstonecross_1_Q1	light duty vehicle	10	7277	
Nstonecross_1	light duty vehicle	50	7277	
Nstonecross_1_Q2	light duty vehicle	10	7277	
access1	light duty vehicle	40	0	1

Scenario D

Scenario D				
		Avorage energy		Vahiala Caurt
Cauraa narra	Vahiala cata sass	Average speed	Total Valsialas	Vehicle Count
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
Nstonecross 2 Q1	light duty vehicle	10	7277	304
Nstonecross_2	light duty vehicle	40	7277	304
Nstonecross_2_Q2	light duty vehicle	10	7277	304 66
L21	light duty vehicle		1566	
L22	light duty vehicle	30	12953	541
L25	light duty vehicle	50	13556	566
L26	light duty vehicle	30	1476	63 239
L31	light duty vehicle	30	5711	
L23	light duty vehicle	40	3344	140
L28	light duty vehicle	50	11894	497
L24	light duty vehicle	30	1377	58
L27	light duty vehicle	30	1044	45
L29	light duty vehicle	30	12191	509
L33	light duty vehicle	40	10575	442
ELR_3_EB	light duty vehicle	80	14600	609
ELR_3_WB	light duty vehicle	80	12191	509
5B	light duty vehicle	50	15238	636
9B	light duty vehicle	50	14600	609
Sstonecross	light duty vehicle	50	4078	
ELR_1_EB	light duty vehicle	80	14519	
ELR_1_WB	light duty vehicle	80	15238	636
L32	light duty vehicle	20	1319	
5A	light duty vehicle	50	14519	606
L1	heavy duty vehicle	5	9	1
L3	heavy duty vehicle	5	734	32
12B	heavy duty vehicle	40	819	35
14A_Q	heavy duty vehicle	10	743	
Church_Q	heavy duty vehicle	10	338	
L5	heavy duty vehicle	5	329	
L6	heavy duty vehicle	10	175	8
Keynon	heavy duty vehicle	40	189	9
L2	heavy duty vehicle	20	14	2
L4	heavy duty vehicle	10	900	39
14B	heavy duty vehicle	50	833	36
12A	heavy duty vehicle	20	914	39
Keynon_Q	heavy duty vehicle	10	189	9
Keynon_S	heavy duty vehicle	50	144	/
Newton_3_Q	heavy duty vehicle	10	964	
Newton_3	heavy duty vehicle	50	964	41
Newton_2_SB	heavy duty vehicle	30	468	
Newton_2_NB_A	heavy duty vehicle	10	419	
Newton_2_NB_B	heavy duty vehicle	40	419	
16B	heavy duty vehicle	50	968	
L14	heavy duty vehicle	10	18	
15A_Q	heavy duty vehicle	10	320	
15B	heavy duty vehicle	40	284	13
15	heavy duty vehicle	35	604	26
L13	heavy duty vehicle	20	113	
L18	heavy duty vehicle	30	711	31
L10	heavy duty vehicle	30	950	
L15	heavy duty vehicle	40	171	8
L9	heavy duty vehicle	30	396	18

Scenario D

Scenario D				
Source name	Vehicle category	Average speed (km/hr)	Total Vehicles	Vehicle Count (hourly average)
L16	heavy duty vehicle	30	302	
L7	heavy duty vehicle	20	23	
L20	heavy duty vehicle	20	1075	
L19	heavy duty vehicle	20	1073	
16A	heavy duty vehicle	50	1089	
L12		40	909	
church2	heavy duty vehicle heavy duty vehicle	50	338	
church2 Q		10	338	
	heavy duty vehicle heavy duty vehicle	40	0	
access2				
church1_Q1	heavy duty vehicle	10	338	
church1	heavy duty vehicle	50	338	
church1_Q2	heavy duty vehicle	10	329	
slag	heavy duty vehicle	30	153	
golborne	heavy duty vehicle	30	374	
Nstonecross_1_Q1	heavy duty vehicle	10	509	
Nstonecross_1	heavy duty vehicle	50	509	
Nstonecross_1_Q2	heavy duty vehicle	10	509	
access1	heavy duty vehicle	40	0	
Nstonecross_2_Q1	heavy duty vehicle	10	509	
Nstonecross_2	heavy duty vehicle	40	509	
Nstonecross_2_Q2	heavy duty vehicle	10	509	
L21	heavy duty vehicle	40	95	5
L22	heavy duty vehicle	30	679	
L25	heavy duty vehicle	50	743	
L26	heavy duty vehicle	30	0	
L31	heavy duty vehicle	30	414	
L23	heavy duty vehicle	40	140	
L28	heavy duty vehicle	50	810	
L24	heavy duty vehicle	30	41	
L27	heavy duty vehicle	30	0	
L29	heavy duty vehicle	30	851	36
L33	heavy duty vehicle	40	805	35
ELR_3_EB	heavy duty vehicle	80	743	32
ELR 3 WB	heavy duty vehicle	80	851	36
5B	heavy duty vehicle	50	950	41
9B	heavy duty vehicle	50	743	32
Sstonecross	heavy duty vehicle	50	10	
ELR 1 EB	heavy duty vehicle	80	774	
ELR 1 WB	heavy duty vehicle	80	950	
L32	heavy duty vehicle	20	5	
5A	heavy duty vehicle	50	774	
L40	light duty vehicle	20	18491	
L40	heavy duty vehicle	10	1027	
Keynon_S_Q	light duty vehicle	10	6055	
Keynon_S_Q	heavy duty vehicle	10	144	

R1803: Land East of Stone Cross Lane North, Lowton R1803-R01-Appendix C ADMS-Roads Model Input Data

Scenario E

Scenario E				
		Average speed		Vehicle Count
Source name	Vehicle category	(km/hr)	Total Vehicles	(hourly average)
L1	light duty vehicle	5	493	22
L3	light duty vehicle	5	14612	610
12B	light duty vehicle	40	14989	626
14A Q	light duty vehicle	10	15105	630
Church_Q	light duty vehicle	10	7479	
L5	light duty vehicle	5	6986	
L6	light duty vehicle	10	5555	
Keynon	light duty vehicle	40	5632	236
L2	light duty vehicle	20	77	4
L4	light duty vehicle	10	12901	539
14B	light duty vehicle	50	12396	
12A	light duty vehicle	20	12978	542
Keynon Q	light duty vehicle	10	5632	
Keynon_S	light duty vehicle	50	6344	265
Newton 3 Q	light duty vehicle	10	13894	580
Newton 3	light duty vehicle	50	13894	
Newton_2_SB	light duty vehicle	30	6779	
Newton 2 NB A	light duty vehicle	10	6977	292
Newton_2_NB_B	light duty vehicle	40	6977	292
16B	light duty vehicle	50	16869	704
L14	light duty vehicle	10	324	15
15A Q	light duty vehicle	10	6028	252
15B	light duty vehicle	40	5740	240
15	light duty vehicle	45	11768	
L13	light duty vehicle	20	2842	119
L18	light duty vehicle	30	12120	506
L10	light duty vehicle	30	16545	690
L15	light duty vehicle	40	2898	122
L9	light duty vehicle	30	6891	288
L16	light duty vehicle	30	5704	239
L7	light duty vehicle	20	86	
L20	light duty vehicle	20	13971	583
L19	light duty vehicle	20	432	19
16A	light duty vehicle	50	14403	601
L12	light duty vehicle	40	12806	535
church2	light duty vehicle	50	7479	
church2 Q	light duty vehicle	10	7479	313
access2	light duty vehicle	40	1422	60
church1_Q1	light duty vehicle	10		
church1	light duty vehicle	50	7355	
church1 Q2	light duty vehicle	10	7315	
slag	light duty vehicle	30	12910	
golborne	light duty vehicle	30	9215	
Nstonecross_1_Q1	light duty vehicle	10	8155	
Nstonecross 1	light duty vehicle	50	8155	
Nstonecross_1_Q2	light duty vehicle	10		
access1	light duty vehicle	40		

Nstonecross_2_Q1	light duty vehicle	10	8531	356
Nstonecross_2	light duty vehicle	40	8531	356
Nstonecross 2 Q2	light duty vehicle	10	8531	356
L21	light duty vehicle	40	1822	77
L22	light duty vehicle	30	12996	543
L25	light duty vehicle	50	13863	579
L26	light duty vehicle	30	1507	64
L31	light duty vehicle	30	6709	281
L23	light duty vehicle	40	3782	159
L28	light duty vehicle	50	11929	498
L24	light duty vehicle	30	1647	70
L27	light duty vehicle	30	1044	45
L29	light duty vehicle	30	12468	521
L33	light duty vehicle	40	10582	442
ELR_3_EB	light duty vehicle	80	14907	622
ELR_3_WB	light duty vehicle	80	12468	521
5B	light duty vehicle	50	15711	656
9B	light duty vehicle	50	14907	622
Sstonecross	light duty vehicle	50	4142	174
ELR_1_EB	light duty vehicle	80	14818	618
ELR_1_WB	light duty vehicle	80	15711	656
L32	light duty vehicle	20	1347	57
5A	light duty vehicle	50	14818	618
L1	heavy duty vehicle	5	9	1
L3	heavy duty vehicle	5	734	32
12B	heavy duty vehicle	40	819	35
14A_Q	heavy duty vehicle	10	743	32
Church_Q	heavy duty vehicle	10	338	15
L5	heavy duty vehicle	5	329	15
L6	heavy duty vehicle	10	175	8
Keynon	heavy duty vehicle	40	189	9
L2	heavy duty vehicle	20	14	2
L4	heavy duty vehicle	10	900	39
14B	heavy duty vehicle	50	833	36
12A	heavy duty vehicle	20	914	39
Keynon_Q	heavy duty vehicle	10	189	9
Keynon_S	heavy duty vehicle	50	144	7
Newton_3_Q	heavy duty vehicle	10	964	41
Newton_3	heavy duty vehicle	50	964	41
Newton_2_SB	heavy duty vehicle	30	468	
Newton_2_NB_A	heavy duty vehicle	10	419	18
Newton_2_NB_B	heavy duty vehicle	40	419	18
16B	heavy duty vehicle	50	968	41
L14	heavy duty vehicle	10	18	2
15A_Q	heavy duty vehicle	10	320	14
15B	heavy duty vehicle	40	284	13
15	heavy duty vehicle	35	604	26
L13	heavy duty vehicle	20	113	6
L18	heavy duty vehicle	30	711	31
L10	heavy duty vehicle	30	950	41
L15	heavy duty vehicle	40	171	8
L9	heavy duty vehicle	30	396	18
L16	heavy duty vehicle	30	302	14
L7	heavy duty vehicle	20	23	2
L20	heavy duty vehicle	20	1075	46
L19	heavy duty vehicle	20	14	2

16A	heavy duty vehicle	50	1089	46
L12	heavy duty vehicle	40	909	39
church2	heavy duty vehicle	50	338	
church2_Q	heavy duty vehicle	10	338	15
access2	heavy duty vehicle	40	0	1
church1_Q1	heavy duty vehicle	10	338	15
church1	heavy duty vehicle	50	338	15
church1_Q2	heavy duty vehicle	10	329	15
slag	heavy duty vehicle	30	153	
golborne	heavy duty vehicle	30	374	17
Nstonecross_1_Q1	heavy duty vehicle	10	509	22
Nstonecross_1	heavy duty vehicle	50	509	22
Nstonecross_1_Q2	heavy duty vehicle	10	509	22
access1	heavy duty vehicle	40	0	
Nstonecross_2_Q1	heavy duty vehicle	10	509	22
Nstonecross_2	heavy duty vehicle	40	509	22
Nstonecross_2_Q2	heavy duty vehicle	10	509	22
L21	heavy duty vehicle	40	95	5
L22	heavy duty vehicle	30	679	29
L25	heavy duty vehicle	50	743	32
L26	heavy duty vehicle	30	0	1
L31	heavy duty vehicle	30	414	18
L23	heavy duty vehicle	40	140	7
L28	heavy duty vehicle	50	810	35
L24	heavy duty vehicle	30	41	3
L27	heavy duty vehicle	30	0	1
L29	heavy duty vehicle	30	851	36
L33	heavy duty vehicle	40	805	35
ELR_3_EB	heavy duty vehicle	80	743	32
ELR_3_WB	heavy duty vehicle	80	851	36
5B	heavy duty vehicle	50	950	41
9B	heavy duty vehicle	50	743	32
Sstonecross	heavy duty vehicle	50	10	
ELR_1_EB	heavy duty vehicle	80	774	33
ELR_1_WB	heavy duty vehicle	80	950	41
L32	heavy duty vehicle	20	5	1
5A	heavy duty vehicle	50	774	33
L40	light duty vehicle	20	18842	786
L40	heavy duty vehicle	10	1027	44
Keynon_S_Q	light duty vehicle	10	6344	265
Keynon_S_Q	heavy duty vehicle	10	144	7

APPENDIX D

Results of ADMS-Roads Modelling

R1803 Lane East of Stone Cross Lane, Lowton Appendix D Summary of ADMS-Roads Results

			Scenario A 2011 Baseline					Scenario B 2013 Withou	ut Development					Scenario C 2013 With D	Development									
Receptor Name	Х	Y	Modelled NOx Adjust (x1.17			otal NO2 Modelled djusted) PM10	Backgroun Total d PM10 PM10		Adjusted NOx Back (x1.17) d NO		Total NO2 Model PM10	ed Backgrou PM10	Ind Total PM10		Adjusted NOx Backgroun (x1.17) d NO2	Total NO2		ackground Total M10 PM10		e magnitude of change	descriptor	% change PM10	magnitude of change	descriptor
			(×1.17)) NOZ	(at	ujusteu) I W 10	a i wio PWIO	IVOX	(x1.17)	OZ.	INTO	TWITO	FWIO	INOX	(X1.17)		TWIO	IVITO PIVITO) NOZ	Change		I WITO	change	
Church Lane / A58			47.40	EE 4E	01.10	44.51	7 15.04 10.01	44.05	E1 00 1	0.40	40.50	0.04	40 40 00	45.00	E0 00 10 40	40.00	0.00	45 40 40	44	10 Small	Climbt advance	0.04	I I man a un a matibal a	Magilible
	362133 362127.7	396948.4 396956.1	47.40 40.71	55.45 47.63	21.12 21.12	44.51 3.0 41.66 2.6		44.35 38.08		9.49		2.84 15. 2.41 15.		45.32 38.99	53.03 19.49 45.62 19.49	40.08	2.93 2.50			08 Small	Slight adverse Slight adverse		Imperceptible Imperceptible	Neglible Neglible
	362121.9	396964.3	35.75	41.83		39.46 2.2		33.43		9.49		2.11 15.		34.29	40.12 19.49	37.86	2.19	15.48 17	_	02 Small	Slight adverse	0.20	Imperceptible	Neglible
	362155.1 362148.9	396960 396969.8	42.22 37.60	49.39 43.99	21.12 21.12	42.31 2.7 40.29 2.4		39.48 35.17		9.49		2.57 15. 2.24 15.	_	40.56 36.19	47.45 19.49 42.34 19.49	40.8 38.77	2.67			25 Small 23 Small	Slight adverse		Imperceptible Imperceptible	Neglible Neglible
	362118.8	396890.5	23.99	28.06		33.93 1.6				9.49		1.54 15.		22.58	26.42 19.49		1.57			45 Imperceptible	3		Imperceptible	Neglible
	362122.2	396939.7	53.39	62.46	21.12	46.96 3.3				9.49		3.13 15.		50.75	59.38 19.49	45.34	3.21	15.48 18		83 Imperceptible			Imperceptible	Neglible
	362199.4 362211.5	396879.5	28.10 39.61	32.88 46.34	21.12 21.12	35.92 1.8 41.18 2.5		26.14 36.95		9.49 9.49		1.73 15. 2.46 15.		26.69 37.58	31.23 19.49 43.97 19.49	34.14 39.42	1.79 2.52	15.48 17 15.48 18		70 Imperceptible72 Imperceptible			Imperceptible Imperceptible	Neglible Neglible
DT52	362137	396947	51.63	60.41	21.12	46.25 3.3				9.49		3.11 15.		49.43		44.77	3.22	15.48 18		23 Small	Slight adverse		/ Imperceptible	Neglible
Church Lane	362105.1	206097.7	25.67	30.04	21.12	34.75 1.6	7 15.84 17.51	23.95	28.02 1	9.49	32.75	1.56 15.	48 17.04	24.62	28.80 19.49	33.09	1.63	15.48 17	7.11 0.8	85 Imperceptible	Neglible	0.16	Imperceptible	Neglible
	362128.7	396998.9	28.91	33.82		36.30 1.8		26.97		9.49		1.73 15.		27.87	32.61 19.49	34.73	1.82			12 Small	Neglible		Imperceptible Imperceptible	Neglible
	362105.6	397038.3	18.79	21.99	19.71	30.01 1.3		17.40		8.31		1.29 14.		18.02	21.08 18.31	28.54	1.36			82 Imperceptible	Neglible		Imperceptible	Neglible
	362069.5 362084.8	397027.3 397076.7	14.51 15.59	16.98 18.24	19.71 19.71			13.51 14.54		8.31 8.31		0.97 14. 1.12 14.		13.88 15.13	16.24 18.31 17.70 18.31	26.29 26.98	1.02			50 Imperceptible 80 Imperceptible		_	Imperceptible Imperceptible	Neglible Neglible
	362042.2	397084.1	11.13	13.02	19.71			10.60		8.31		0.80 14.		10.99	12.86 18.31	24.69	0.84			55 Imperceptible			Imperceptible	Neglible
	362065.1	397113	13.90	16.26	19.71			13.66		8.31		1.04 14.	_	14.27	16.69 18.31	26.51	1.11		0.8	85 Imperceptible	Neglible	0.17	Imperceptible	Neglible
	362021.2 362037.5	397132.2 397151.2	10.46 15.10	12.24 17.67	19.71 19.71			13.03 23.45		8.31 8.31		0.87 14. 1.42 14.		13.70 24.67	16.03 18.31 28.87 18.31	26.2 32.03	0.94 1.53		i.85 0.9 i.44 1.9	95 Imperceptible	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
		397177.1	12.01	14.06	19.71					8.31		1.11 14.	_	19.25	22.52 18.31	29.19	1.21			38 Small	Neglible	0.25	Imperceptible	Neglible
	362009.1	397153.5	10.00	11.70	19.71			13.73		8.31		0.88 14.		14.77	17.28 18.31	26.78	0.98			43 Small	Neglible		Imperceptible	Neglible
	361978.8 362014.5	397177.2 397202	7.62 11.21	8.91 13.11	20.18 19.71			9.48 16.87		8.77 8.31		0.64 15. 1.04 14.		10.37 17.77	12.13 18.77 20.79 18.31	24.79	0.73 1.12			25 Small 23 Small	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
	361961.9	397214.9	8.15	9.54	20.18	24.80 0.6	9 15.61 16.30	8.96		8.77	23.99	0.65 15.	26 15.91	9.44	11.05 18.77	24.26	0.71	15.26 15	.97 0.0	68 Imperceptible		0.13	Imperceptible	Neglible
		397261.3	7.38	8.64		24.38 0.6		7.95		8.77		0.59 15.		8.33	9.74 18.77	23.63	0.63			52 Imperceptible	Neglible		Imperceptible	Neglible
		397263.7 397330.5	9.29 10.78	10.87 12.61	20.18			8.76 9.88		8.77 8.77		0.72 15. 0.84 15.		9.17 10.34		24.11	0.77	15.26 16 15.26 16		58 Imperceptible 65 Imperceptible			Imperceptible Imperceptible	Neglible Neglible
	361844.4		7.28	8.52	20.18			6.66		8.77		0.57 15.		6.95		22.85	0.60			43 Imperceptible			Imperceptible	Neglible
			9.97	11.66		25.80 0.8				8.77		0.78 15.	_	9.44		24.27	0.83	15.26 16		63 Imperceptible		_	Imperceptible	Neglible
		397464.9 397547.1	6.99 8.81	8.18 10.30	20.18			6.35 7.97		8.77 8.77		0.54 15. 0.69 15.		6.64 8.35		22.67	0.58			43 Imperceptible55 Imperceptible	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
	361698.5		6.79	7.94	20.18			6.17		8.77		0.53 15.		6.45		22.56	0.56	15.26 15		40 Imperceptible			Imperceptible	Neglible
		397643.5	9.13	10.68		25.34 0.7		8.29		8.77		0.70 15.		8.70		23.84	0.75			58 Imperceptible			Imperceptible	Neglible
	361615.8 361599.1		8.85 11.74	10.35 13.74	20.18			8.06 10.76		8.77 8.77		0.67 15. 0.86 15.		8.45 11.29		23.7 25.3	0.72	15.26 15 15.26 16		55 Imperceptible72 Imperceptible	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
	361578.2		8.41	9.84	20.18			7.77		8.77		0.61 15.		8.14		23.53	0.65			53 Imperceptible			Imperceptible	Neglible
	361931.7		6.12	7.16	20.18	23.67 0.4	9 15.61 16.10	5.99	7.01 1	8.77	22.29	0.47 15.	26 15.73	6.33	7.41 18.77	22.49	0.51	15.26 15	.77 0.	50 Imperceptible	Neglible	0.09	Imperceptible	Neglible
Church Lane / Sto	361524		22.68	26.53	20.18	32.41 1.6	0 15.61 17.21	22.03	25.77 1	8 77	31.09	1.60 15.	26 16.86	23.15	27.08 18.77	31.67	1.71	15.26 16	97 1	45 Small	Neglible	0.27	/ Imperceptible	Neglible
		397777.3	24.02	28.10		33.08 1.6				8.77		1.56 15.		23.57	27.57 18.77		1.65		_	20 Small	Neglible		Imperceptible	Neglible
		397749.3	27.67	32.37		34.85 1.6				8.77		1.61 15.		27.87	32.61 18.77	34.07	1.72			50 Small	Neglible		Imperceptible	Neglible
		397720.3 397734.3	24.60 26.36	28.78 30.84		33.36 1.3 34.22 1.4		23.98 25.63		8.77 8.77		1.38 15. 1.47 15.	_	25.13 26.80	29.40 18.77 31.36 18.77	32.68 33.53	1.48 1.58			45 Small 48 Small	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
	361449.3		13.36	15.63	20.18			12.51		8.77		0.89 15.		13.02		26.26	0.94			70 Imperceptible	Neglible		Imperceptible	Neglible
Stone Cross Lane		007077.0	40.05	40.44	00.40		ol 45 o.l 40 o.4	0.00	44 50 4		01.51	. 75		10.11	10.17	04.04	0.04	45.00		aeli .a.i	la i iii i		di en i	la e
	361478.6 361451.3	397677.3 397681.2	10.35 13.49	12.11 15.79	20.18			9.88 12.85		8.77 8.77		0.75 15. 1.00 15.		10.41 13.52	12.17 18.77 15.82 18.77	24.81 26.54	1.08	15.26 16 15.26 16		75 Imperceptible 92 Imperceptible	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
40	361452.5	397637.5	8.89	10.40	20.18	25.21 0.6	5 15.61 16.26	8.46	9.90 1	8.77	23.71	0.68 15.	26 15.94	8.91	10.43 18.77	23.96	0.73	15.26 15	.99 0.0	63 Imperceptible	Neglible	0.13	Imperceptible	Neglible
	361381	397582.9	11.12	13.01	20.18					8.77		0.87 15.		11.11	13.00 18.77	25.2	0.93			77 Imperceptible			Imperceptible	Neglible
	361355.2 361266.9	397501.4 397409	8.96 13.10	10.48 15.33	20.18			8.52 12.42		8.77 8.77		0.70 15. 1.02 15.		8.98 13.08	10.51 18.77 15.30 18.77	24 26.29	0.76 1.10			65 Imperceptible90 Imperceptible			Imperceptible Imperceptible	Neglible Neglible
44	361291.5	397410.6	10.17	11.90		25.91 0.7	5 15.61 16.36	9.68	11.32 1	8.77	24.4	0.79 15.	26 16.05	10.20	11.94 18.77	24.69	0.85	15.26 16		73 Imperceptible		_	Imperceptible	Neglible
	361247.4		11.05	12.93		26.38 0.7		10.52		8.77		0.82 15.		11.11		25.2	0.89			82 Imperceptible			Imperceptible	Neglible
	361277.3 361244.9		10.65 14.43	12.46 16.88	20.18				11.90 1 16.24 1	_		0.79 15. 0.96 15.	26 16.05 26 16.22		12.59 18.77 17.20 18.77	25 27.18	0.86 1.05	15.26 16 15.26 16		82 Imperceptible 10 Small	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
48	361241.7	397252	16.29	19.06	20.18	29.16 0.9	7 15.61 16.58	15.84	18.53 1	8.77	27.8	0.99 15.	26 16.25	16.82	19.68 18.77	28.33	1.09	15.26 16	5.35 1.0	32 Small	Neglible	0.24	Imperceptible	Neglible
	361239.4		18.31	21.42	20.18				20.92 1				26 16.34			29.57	1.20	15.26 16		68 Small	Neglible		Imperceptible	Neglible
	361213.6 361169.4		11.48 14.73	13.43 17.24	20.18				12.78 1 16.43 1			0.84 15. 1.07 15.	26 16.10 26 16.33			25.43 27.26	0.91	15.26 16 15.26 16		82 Imperceptible 10 Small	Neglible Neglible		Imperceptible Imperceptible	Neglible Neglible
52	361050.2	396995.9	24.48	28.64	20.62	33.71 1.7	2 16.63 18.35	23.04	26.95 1	9.06	31.88	1.72 16.	28 18.00	23.69	27.71 19.06	32.21	1.79	16.28 18	3.07 0.8	83 Imperceptible	Neglible	0.17	Imperceptible	Neglible
	361053.4	397023.9	19.80	23.17	20.18	30.97 1.3	6 15.61 16.97	18.77	21.96 1	8.77	29.37	1.37 15.	26 16.63	19.47	22.78 18.77	29.75	1.45	15.26 16	.71 0.9	95 Imperceptible	Neglible	0.18	Imperceptible	Neglible
East Lancs Road	(A580) 361430.2	396952.6	16.98	19.87	20.62	29.94 1.5	0 16.63 18.13	15.10	17.67 1	9.06	27.68	1.46 16.	28 17.74	15.34	17.95 19.06	27.81	1.49	16.28 17	7.77 0 :	32 Imperceptible	Neglible	0.07	Imperceptible	Neglible
55	361570.2	396893.5	15.04	17.60	20.62	28.93 1.3			15.62 1	9.06			28 17.56			26.83	1.31	16.28 17	7.59 0.2	27 Imperceptible	Neglible		Imperceptible	Neglible
	361861.2		11.06	12.94	20.62				11.64 1			0.89 16.		10.10	11.82 19.06	24.92	0.91	16.28 17		23 Imperceptible			Imperceptible	Neglible
	361951 362018.8		13.42 15.01	15.70 17.56	20.62				14.24 1 16.15 1			1.01 16. 1.03 15.		12.35 14.00	14.45 19.06 16.39 19.49	26.17 27.49	1.03	16.28 17 15.48 16		25 Imperceptible 27 Imperceptible			Imperceptible Imperceptible	Neglible Neglible
	361987.6		31.71	37.11	20.62					9.49		2.18 16.		29.45	34.45 19.06	35.12	2.22	16.28 18		47 Imperceptible	- 9		Imperceptible Imperceptible	Neglible
	362018		45.06	52.72	21.12	43.53 2.8	9 15.84 18.73		49.06 1		41.43	2.71 15.			49.64 19.49	41.65	2.76	15.48 18	.24 0.	55 Imperceptible	Neglible	0.12	Imperceptible	Neglible
61	362078.3	396887.6	21.08	24.66	21.12	32.49 1.4	3 15.84 17.27	19.51	22.83 1	9.49	30.44	1.36 15.	48 16.84	19.79	23.15 19.49	30.59	1.39	15.48 16	0.87	37 Imperceptible	Neglible	0.07	Imperceptible	Neglible

11th February 2013

			Scenario A								Scenario C														
	1		2011 Baseline							Development						evelopment					1				
Receptor Name	x	1	Modelled NOx	Adjusted NOx (x1.17)	Background NO2	Total NO2 (adjusted)		Backgroun Total PM10 PM10		djusted NOx Backgroun d NO2	Total NO2		Background PM10		Modelled NOx	Adjusted NOx Backs (x1.17) d NO	groun Total NO	Modelled PM10	Back PM1	ground Total 0 PM10	% cha	ange magnitude of change	descriptor	% change magnitude of PM10 change	descriptor
Kenyon Lane	/ Newton Lane j	unction	(J6)	(×1.17)	1102	(uujusteu)	11 10110	T WITO TIME	IVOX IX	(1.17) GIVOL		1 W 10 p	14110	i mio	NOX	(x1.17)	-	I WITO	11 1011	0 111110	INOL	onango		i wite pricinge	
	65 362217.4	396852.3	19.50	22.8	21.12	31.70	1.30	15.84 17.14	18.13	21.21 19.49	29.71	1.24	15.48	16.72	18.50	21.65 19	.49 29.91	1.2	27	15.48 16.7	'5	0.50 Imperceptib	le Neglible	0.10 Imperceptible	Neglible
	66 362249.9	396801.2	21.55	25.2	2 21.12	32.73	1.36	15.84 17.20	20.14	23.56 19.49	30.78	1.28	15.48	16.76	20.50	23.99 19	.49 30.97	1.3	32	15.48 16.8	30	0.47 Imperceptib	le Neglible	0.09 Imperceptible	Neglible
	67 362280.7	396794.1	42.40	49.6	1 21.12	42.39	2.60	15.84 18.44	39.65	46.38 19.49	40.38	2.45	15.48	17.93	40.30	47.15 19	.49 40.68	2.5	51	15.48 17.9	99	0.75 Imperceptib	le Neglible	0.15 Imperceptible	Neglible
	68 362269.2	396755.5	57.39	67.1	4 21.12	48.55	3.17	15.84 19.01	54.10	63.30 19.49	46.77	2.99	15.48	18.47	54.51	63.78 19	.49 46.94	3.0)2	15.48 18.5	50	0.42 Imperceptib	le Neglible	0.10 Imperceptible	Neglible
	69 362277.6	396736.1	36.26	42.4	2 21.12	39.69	2.13	15.84 17.97	34.02	39.80 19.49	37.73	2.00	15.48	17.48	34.32	40.16 19	.49 37.88	2.0	03	15.48 17.5	51	0.38 Imperceptib		0.07 Imperceptible	Neglible
	70 362250.7	396680.2	10.33		9 21.12	26.90	0.73	15.84 16.57	9.49	11.11 19.49	24.99	0.71	15.48	16.19	9.59	11.22 19	.49 25.05	0.7	72	15.48 16.2	20	0.15 Imperceptib	le Neglible	0.03 Imperceptible	Neglible
	71 362265.7	396704.9	14.78	17.3	0 21.12	29.27	1.02	15.84 16.86	13.64	15.95 19.49	27.29	0.98	15.48	16.46	13.77	16.11 19	.49 27.36	1.0	00	15.48 16.4	18	0.18 Imperceptib	le Neglible	0.03 Imperceptible	Neglible
	72 362296.4	396728.4	20.83	24.3	7 21.12	32.36	1.34	15.84 17.18	19.48	22.79 19.49	30.43	1.27	15.48	16.75	19.78	23.15 19	.49 30.59	1.3	30	15.48 16.7	'8	0.40 Imperceptib	le Neglible	0.07 Imperceptible	Neglible
	73 362319.7	396695.3	8.93	10.4	5 21.12	26.14	0.63	15.84 16.47	8.29	9.70 19.49	24.31	0.61	15.48	16.09	8.42	9.86 19	.49 24.39	0.6	32	15.48 16.1	0	0.20 Imperceptib		0.04 Imperceptible	Neglible
	74 362326	396718.9	20.63	24.1	4 21.12	32.27	1.64	15.84 17.48	18.97	22.19 19.49	30.16	1.57	15.48	17.05	19.41	22.71 19	.49 30.39	1.6	32	15.48 17.1	0	0.58 Imperceptib	le Neglible	0.13 Imperceptible	Neglible
	75 362302.2	396739.8	33.98	39.7	6 21.12	38.66	2.19	15.84 18.03	31.90	37.32 19.49	36.71	2.04	15.48	17.52	32.53	38.06 19	.49 37.02	2.1	10	15.48 17.5	58	0.78 Imperceptib		0.14 Imperceptible	Neglible
	76 362290.3	396758.7	45.51	53.2	5 21.12	43.72	2.62	15.84 18.46	43.12	50.45 19.49	41.97	2.50	15.48	17.98	43.63	51.04 19	.49 42.2	2.5	54	15.48 18.0)2	0.58 Imperceptib		0.12 Imperceptible	Neglible
	77 362296.4	396769.5	39.04	45.6	8 21.12	40.93	2.30	15.84 18.14	36.94	43.22 19.49	39.12	2.20	15.48	17.68	37.36	43.71 19	.49 39.31	2.2	24	15.48 17.7	'2	0.48 Imperceptib		0.10 Imperceptible	Neglible
	78 362299.8	396820.7	34.21		3 21.12	38.76	2.19	15.84 18.03		37.42 19.49	36.75	2.10	15.48	17.58	32.25		.49 36.88	2.1		15.48 17.6		0.33 Imperceptib		0.07 Imperceptible	Neglible
	79 362314	396847.1	36.12		6 21.12	39.63	2.19	15.84 18.03	33.94	39.71 19.49	37.69	2.09	15.48	17.57	34.18	39.98 19	.49 37.81	2.1	12	15.48 17.6	60	0.30 Imperceptib		0.06 Imperceptible	Neglible
East Lanes R	oad / Nerwton R	oad junc	tion (J5)																						
	80 362378.1	396863.8	26.63	31.1	6 21.12	35.21	1.63	15.84 17.47	25.02	29.27 19.49	33.29	1.57	15.48	17.05	25.21	29.50 19	.49 33.39	1.5	59	15.48 17.0)7	0.25 Imperceptib	le Neglible	0.05 Imperceptible	Neglible
	81 362393.2	396876.3	27.76	32.4	8 21.12	35.75	1.71	15.84 17.55	26.04	30.47 19.49	33.81	1.65	15.48	17.13	26.26	30.72 19	.49 33.92	1.6	67	15.48 17.1	5	0.27 Imperceptib	le Neglible	0.05 Imperceptible	Neglible
	82 362424.4	396890.9	31.13	36.4	2 21.12	37.34	1.91	15.84 17.75	29.13	34.09 19.49	35.36	1.83	15.48	17.31	29.40	34.40 19	.49 35.49	1.8	36	15.48 17.3	34	0.33 Imperceptib	le Neglible	0.07 Imperceptible	Neglible
	83 362465.7	396892.6	28.93	33.8	5 21.12	36.31	1.78	15.84 17.62	27.00	31.60 19.49	34.3	1.71	15.48	17.19	27.26	31.90 19	.49 34.43	1.7	73	15.48 17.2	21	0.33 Imperceptib		0.07 Imperceptible	Neglible
	84 362447.3	396892.6	30.35	35.5	1 21.12	36.98	1.86	15.84 17.70	28.37	33.19 19.49	34.98	1.78	15.48	17.26	28.64	33.50 19	.49 35.11	1.8	31	15.48 17.2		0.33 Imperceptib		0.07 Imperceptible	Neglible
	85 362499	396893.1	27.08	31.6	9 21.12	35.43	1.69	15.84 17.53	25.20	29.49 19.49	33.39	1.62	15.48	17.10	25.45	29.78 19	.49 33.51	1.6	35	15.48 17.1		0.30 Imperceptib		0.06 Imperceptible	Neglible
	86 362538.2	396893.2	22.92			33.40	1.53	15.84 17.37		24.72 19.49	31.29	1.48	15.48	16.96	21.34		.49 31.4			15.48 16.9		0.27 Imperceptib		0.06 Imperceptible	Neglible
	87 362586.1	396942.6	31.23			37.39	2.34	15.84 18.18		33.10 19.49	34.94	2.27	15.48	17.75	28.59		.49 35.09	2.3		15.48 17.7		0.38 Imperceptib		0.09 Imperceptible	Neglible
	88 362523.6	396943.4	35.53				2.46	15.84 18.30		38.16 19.49	37.06	2.37	15.48		32.95		.49 37.22	2.4		15.48 17.8		0.40 Imperceptib		0.09 Imperceptible	Neglible
	89 362487.1	396943.5	38.82		2 21.12	40.83	2.60	15.84 18.44	35.85	41.94 19.49	38.6	2.50	15.48	17.98	36.20		.49 38.77	2.5	54	15.48 18.0)2	0.43 Imperceptib		0.09 Imperceptible	Neglible
	90 362459.6	396976.3	30.25			36.93	1.94	15.84 17.78	28.39	33.21 19.49	34.99	1.89	15.48	17.37	28.65	33.51 19	.49 35.11	1.9		15.48 17.3		0.30 Imperceptib		0.07 Imperceptible	Neglible
	96 362411.2	396967.1	41.27	48.2			2.62	15.84 18.46		45.50 19.49	40.03	2.55	15.48		39.22		.49 40.18	2.5		15.48 18.0		0.37 Imperceptib		0.08 Imperceptible	Neglible
DT159	362640	396905	24.98	29.2	3 21.12	34,41	1.87	15.84 17.71		26.41 19.49	32.04	1.82	15.48	17.30	22.80	26.68 19	.49 32.16	1.8	34	15.48 17.3		0.30 Imperceptib		0.07 Imperceptible	Neglible
Newton Road					•							•													
	91 362505.8	397037.4	17.84	20.8	8 19.71	29.52	1.23	15.25 16.48	16.70	19.54 18.31	27.83	1.21	14.91	16.12	16.86	19.72 18	.31 27.92	1.2	23	14.91 16.1	4	0.23 Imperceptib	le Neglible	0.04 Imperceptible	Neglible
	92 362544.6	397105.3	17.27	20.2	1 19.71	29.23	1.23	15.25 16.48	16.21	18.97 18.31	27.57	1.23	14.91	16.14	16.35	19.12 18	.31 27.64	1.2	24	14.91 16.1	5	0.18 Imperceptib		0.04 Imperceptible	Neglible
	93 362520	397117.7	19.48				1.39	15.25 16.64		21.38 18.31	28.67	1.38	14.91	16.29	18,41	21.54 18	.31 28.75			14.91 16.3		0.20 Imperceptib		0.04 Imperceptible	Neglible
	94 362475.2	397058	21.15			31.21	1.47	15.25 16.72	19.84	23.21 18.31	29.51	1.45	14.91	16.36	20.01	23.41 18	.31 29.6	1.4	17	14.91 16.3		0.23 Imperceptib		0.04 Imperceptible	Neglible
	95 362437.2	397004.2	30.57	35.7	7 19.71	35.81	1.97	15.25 17.22	28.85	33.75 18.31	34.13	1.92	14.91	16.83	29.09	34.03 18	.31 34.25	1.9	94	14.91 16.8		0.30 Imperceptib		0.06 Imperceptible	Neglible
	97 362344.2	396974.7	25.13	29.4	0 21.12	34,49	1.58	15.84 17.42	23.63	27.65 19.49	32.58	1.52	15.48	17.00	23.91	27.98 19	.49 32.73	1.5	55	15.48 17.0)3	0.37 Imperceptib	le Neglible	0.07 Imperceptible	Neglible
	98 362294.4	396961.8	28.19	32.9	9 21.12	35.96	1.78	15.84 17.62		30.98 19.49	34.03	1.71	15.48	17.19	26.84	31.41 19	.49 34.21			15.48 17.2		0.45 Imperceptib		0.09 Imperceptible	Neglible
DT158	362747	397290	15.77	18.4	5 19.71	28.45	1.15	15.25 16.40		17.37 18.31	26.82	1.15	14.91		14.94		.31 26.88	1.1	16	14.91 16.0		0.15 Imperceptib		0.03 Imperceptible	Neglible
Development																									
	101 361699.5	397122.9													4.42	5.17 18	.77 21.38	0.3	39	15.26 15.6	35				
	102 361377.6	397122.7													5.04	5.90 18	.77 21.75	0.4	13	15.26 15.6	69				
	103 361386.1	397293.1													3.99	4.67 18	.77 21.13	0.3	33	15.26 15.5	59				
		397304.8													3.23		.77 20.69			15.26 15.5	53				
	105 361527.4	397503.7													3.10	3.63 18	.77 20.61	0.2	26	15.26 15.5	52				
	106 361812.5	396995.5													9.16	10.72 19	.06 24.39			16.28 17.1	2				
	107 361644.4	396998.3													8.46	9.89 19	.06 23.99	0.8	30	16.28 17.0	8				
	108 361537.8	397203.8													3.57	4.18 19	.06 21.18	0.3	31	16.28 16.5	59				

Notes:

1. Background NO2 and PM10 is predicted DEFRA data for receptor grid square and modelled year

2. total NO2 is calculated from the DEFRA NOx to NO2 convertor (August 2012 version)

3. % change is as % of the assessment level

Total NO2 / PM10 Concentrations Well below objective (<30 ug/m3) lust below objective (36-40 ug/m3)

% Change (as % of assessment level) <1% increase in NO2 / PM10 concentration

increase in NO2 / PM10 concentration

Magnitude of Change imperceptible

Impact Descriptor negligible

R1803/R1803-R01-Appendix D 11th February 2013

Scenario D	Scenario E
2018 Without Development	2018 With Development

_				ut Developmer							Development											
Receptor Name	X	Υ		Adjusted NOx		Total NO2		Backgroun			Adjusted NOx	Backgroun	Total NO2		ackgroun		% change	magnitude of	descriptor	% change	magnitude of	descriptor
			NOx	(x1.17)	d NO2		PM10	d PM10	PM10	Nox	(x1.17)	d NO2		PM10 d	PM10	PM10	NO2	change		PM10	change	
Church Lane / A58	80 junction	า (J4)																				
1	362133	396948.4	26.61	31.14	1 15.51	30.54	2.15	14.78	16.93	27.32	31.97	15.51	30.9	2.22	14.78	17.00	0.90	Imperceptible	Neglible	0.18	8 Imperceptible	Neglible
2	362127.7		22.84	26.72		28.56	1.84	14.78	16.62	23.50	27.50		28.91	1.91	14.78	16.69		Imperceptible	Neglible		7 Imperceptible	Neglible
	362121.9		20.04	23.45		27.06	1.63	14.78	16.41	20.66	24.18		27.39	1.69	14.78	16.47		Imperceptible	Neglible		6 Imperceptible	Neglible
									16.71				29.4		14.78		1.03	Cmall				
	362155.1	396960	23.65	27.67		28.99	1.93	14.78		24.44	28.60	15.51		2.01		16.79	1.03	Smail	Neglible		0 Imperceptible	Neglible
	362148.9	396969.8	21.08	24.66		27.62	1.70	14.78	16.48	21.83	25.54		28.02	1.78	14.78	16.56		Imperceptible	Neglible		9 Imperceptible	Neglible
62	362118.8	396890.5	13.10	15.33	15.51	23.22	1.23	14.78	16.01	13.35	15.61	15.51	23.36	1.26	14.78	16.04	0.35	Imperceptible	Neglible	0.07	7 Imperceptible	Neglible
63	362122.2	396939.7	30.02	35.12	15.51	32.28	2.39	14.78	17.17	30.58	35.78	15.51	32.57	2.45	14.78	17.23	0.72	Imperceptible	Neglible	0.15	5 Imperceptible	Neglible
64	362199.4	396879.5	15.54	18.18	3 15.51	24.59	1.39	14.78	16.17	15.95	18.66	15.51	24.81	1.44	14.78	16.22	0.55	Imperceptible	Neglible	0.12	2 Imperceptible	Neglible
	362211.5	396944.3	21.79	25.49		28	1.99	14.78	16.77	22.25	26.03	15.51	28.24	2.04	14.78	16.82		Imperceptible	Neglible		3 Imperceptible	Neglible
DT52	362137	396947	29.01	33.94		31.77	2.33	14.78		29.82	34.90		32.18	2.41	14.78			Small	Neglible		1 Imperceptible	Neglible
Church Lane	302137	390947	29.01	33.34	+ 13.31	31.77	2.00	14.70	17.11	29.02	34.30	13.31	32.10	2.41	14.70	17.19	1.03	Omaii	rveglible	0.2	Timperceptible	Ivediine
	0001051				1	00.00		4470	10.01	44.70	47.00	15.51	04.47	4.00	44.70	10.07		I	Ta 1 11 1	1 0 11	alı ını	In the second
	362105.1	396987.7	14.30	16.73		23.89	1.23	14.78		14.78	17.30		24.17	1.29	14.78			Imperceptible	Neglible		3 Imperceptible	Neglible
	362128.7	396998.9	16.14	18.88		24.92	1.35	14.78	16.13	16.80	19.65	15.51	25.29	1.43	14.78	16.21		Imperceptible	Neglible		8 Imperceptible	Neglible
8	362105.6	397038.3	10.26	12.01	15.01	21.12	1.06	14.22	15.28	10.71	12.54	15.01	21.38	1.12	14.22	15.34	0.65	Imperceptible	Neglible	0.15	5 Imperceptible	Neglible
9	362069.5	397027.3	7.98	9.33	15.01	19.79	0.80	14.22	15.02	8.25	9.65	15.01	19.95	0.83	14.22	15.05	0.40	Imperceptible	Neglible	0.09	9 Imperceptible	Neglible
10	362084.8	397076.7	8.55	10.00	15.01	20.12	0.94	14.22	15.16	8.97	10.50	15.01	20.37	0.99	14.22	15.21	0.63	Imperceptible	Neglible	0.15	5 Imperceptible	Neglible
	362042.2	397084.1	6.24	7.30		18.77	0.66	14.22	14.88	6.52	7.63	15.01	18.93	0.70	14.22	14.92		Imperceptible	Neglible		9 Imperceptible	Neglible
	362065.1	397113	8.04	9.41		19.83	0.87	14.22	15.09	8.48	9.93	15.01	20.09	0.70	14.22	15.15		Imperceptible	Neglible		5 Imperceptible	Neglible
				9.41			0.87									14.97						
	362021.2	397132.2	7.77			19.67		14.22	14.92	8.26	9.66		19.95	0.75	14.22		0.70	Imperceptible	Neglible		4 Imperceptible	Neglible
	362037.5	397151.2	14.13	16.53		23.32	1.10	14.22	15.32	15.03	17.58	15.01	23.82	1.19	14.22	15.41	1.25	Small	Neglible		3 Imperceptible	Neglible
	362029.6	397177.1	10.95	12.81		21.51	0.86	14.22	15.08	11.71	13.71	15.01	21.95	0.94	14.22	15.16		Small	Neglible	0.2		Neglible
16	362009.1	397153.5	8.21	9.60	15.01	19.92	0.69	14.22	14.91	8.96	10.48	15.01	20.36	0.78	14.22	15.00	1.10	Small	Neglible	0.22	2 Imperceptible	Neglible
17	361978.8	397177.2	5.63	6.59	15.47	18.86	0.51	14.58	15.09	6.27	7.33	15.47	19.24	0.59	14.58	15.17	0.95	Imperceptible	Neglible	0.20	0 Imperceptible	Neglible
18	362014.5	397202	10.15	11.87		21.05	0.81	14.22	15.03	10.80	12.64	15.01	21.43	0.88	14.22	15.10		Imperceptible	Neglible	0.18	8 Imperceptible	Neglible
	361961.9		5.30	6.20		18.66	0.54	14.58	15.12	5.65	6.61	15.47	18.87	0.58	14.58	15.16		Imperceptible	Neglible	0.1		Neglible
	361996.7		4.70	5.50		18.31	0.34		15.12	4.97	5.81	15.47	18.47	0.52	14.58	15.10						
		397261.3						14.58										Imperceptible	Neglible	0.08		Neglible
	361930.2		5.12	5.99		18.56	0.61	14.58	15.19	5.41	6.33		18.73	0.65	14.58	15.23		Imperceptible	Neglible		0 Imperceptible	Neglible
	361904.9		5.76	6.74		18.94	0.72	14.58	15.30	6.10	7.13		19.13	0.77	14.58	15.35		Imperceptible	Neglible		2 Imperceptible	Neglible
23	361844.4	397356.2	3.88	4.54	15.47	17.82	0.48	14.58	15.06	4.09	4.79	15.47	17.94	0.51	14.58	15.09	0.30	Imperceptible	Neglible	0.08	8 Imperceptible	Neglible
24	361800.9	397456.5	5.25	6.15	15.47	18.64	0.67	14.58	15.25	5.56	6.51	15.47	18.82	0.72	14.58	15.30	0.45	Imperceptible	Neglible	0.1	1 Imperceptible	Neglible
25	361757.9	397464.9	3.70	4.33	15.47	17.71	0.47	14.58	15.05	3.90	4.57	15.47	17.83	0.50	14.58	15.08	0.30	Imperceptible	Neglible	0.07	7 Imperceptible	Neglible
	361737.7	397547.1	4.65	5.44		18.28	0.59	14.58	15.17	4.92	5.76		18.44	0.63	14.58	15.21		Imperceptible	Neglible		0 Imperceptible	Neglible
	361698.5		3.60	4.21		17.65	0.35	14.58	15.03	3.80	4.45	15.47	17.77	0.48	14.58	15.06		Imperceptible	Neglible		7 Imperceptible	
	361654.8																					Neglible
		397643.5	4.85	5.67		18.4	0.60	14.58	15.18	5.14	6.02		18.57	0.64	14.58	15.22		Imperceptible	Neglible		0 Imperceptible	Neglible
	361615.8		4.72	5.52		18.32	0.58	14.58	15.16	5.00	5.85		18.49	0.62	14.58	15.20		Imperceptible	Neglible		0 Imperceptible	Neglible
	361599.1	397696.4	6.35	7.43		19.29	0.73	14.58	15.31	6.73	7.88		19.51	0.78	14.58	15.36	0.55	Imperceptible	Neglible	0.13	3 Imperceptible	Neglible
31	361578.2	397676.1	4.59	5.37	15.47	18.24	0.51	14.58	15.09	4.85	5.68	15.47	18.4	0.55	14.58	15.13	0.40	Imperceptible	Neglible	0.09	9 Imperceptible	Neglible
100	361931.7	397116.7	3.50	4.10	15.47	17.59	0.39	14.58	14.97	3.75	4.39	15.47	17.74	0.42	14.58	15.00	0.37	Imperceptible	Neglible	0.08	8 Imperceptible	Neglible
Church Lane / Sto	ne Cross	Lane North				•										•						
32		397779.2	13.95	16.32	15.47	23.66	1.33	14.58	15.91	14.77	17.28	15.47	24.12	1.42	14.58	16.00	1 15	Small	Neglible	0.23	3 Imperceptible	Neglible
	361492.1	397777.3	13.78	16.13		23.57	1.29	14.58	15.87	14.48	16.94		23.96	1.37	14.58	15.95		Imperceptible	Neglible		0 Imperceptible	Neglible
																15.95						
	361495.1	397749.3	16.07	18.80		24.84	1.28	14.58	15.86	16.95	19.83	15.47	25.33	1.37	14.58		1.23		Neglible		3 Imperceptible	Neglible
	361500.9	397720.3	14.27	16.69		23.84	1.07	14.58	15.65	15.10	17.67	15.47	24.31	1.15	14.58	15.73	1.18		Neglible		2 Imperceptible	Neglible
36	361487.5	397734.3	15.27	17.87		24.4	1.14	14.58	15.72	16.13	18.88		24.88	1.23	14.58	15.81		Small	Neglible	0.22	2 Imperceptible	Neglible
37	361449.3	397784.8	7.56	8.85	15.47	20	0.75	14.58	15.33	7.94	9.29	15.47	20.22	0.79	14.58	15.37	0.55	Imperceptible	Neglible	0.1	1 Imperceptible	Neglible
Stone Cross Lane	North																					
	361478.6	397677.3	5.70	6.67	7 15.47	18.9	0.63	14.58	15.21	6.08	7.11	15.47	19.12	0.68	14.58	15.26	0.55	Imperceptible	Neglible	0.13	3 Imperceptible	Neglible
	361451.3	397681.2	7.34	8.59		19.87	0.85	14.58	15.43	7.83	9.16		20.15	0.92	14.58			Imperceptible	Neglible		7 Imperceptible	Neglible
	361452.5	397637.5	4.82	5.64		18.38	0.58	14.58	15.16	5.15	6.02	15.47	18.57	0.63	14.58	15.21		Imperceptible	Neglible		2 Imperceptible	Neglible
			5.96				0.38				7.44		19.29		14.58							
41		397582.9		6.97		19.05		14.58	15.32	6.36		15.47		0.80		15.38		Imperceptible	Neglible		5 Imperceptible	Neglible
	361355.2	397501.4	4.81	5.63		18.38	0.60	14.58	15.18	5.15	6.02	15.47	18.57	0.65	14.58	15.23		Imperceptible	Neglible		2 Imperceptible	Neglible
	361266.9	397409	7.00	8.19		19.67	0.87	14.58	15.45	7.48	8.75	15.47	19.95	0.94	14.58	15.52		Imperceptible	Neglible		7 Imperceptible	Neglible
44	361291.5	397410.6	5.47	6.40	15.47	18.76	0.68	14.58	15.26	5.85	6.84	15.47	18.99	0.73	14.58	15.31	0.57	Imperceptible	Neglible	0.14	4 Imperceptible	Neglible
45	361247.4	397315.2	5.99	7.00		19.07	0.70	14.58	15.28	6.41	7.50		19.32	0.76	14.58	15.34		Imperceptible	Neglible		5 Imperceptible	Neglible
	361277.3	397313	5.78	6.77		18.95	0.67	14.58	15.25	6.21	7.27	15.47	19.2	0.73	14.58	15.31		Imperceptible	Neglible		5 Imperceptible	Neglible
	361244.9		8.01	9.37		20.26	0.79	14.58		8.60	10.06		20.6	0.87	14.58			Imperceptible	Neglible		9 Imperceptible	Neglible
	361241.7		9.24	10.81		20.20	0.79	14.58		9.95	11.64		21.38	0.87	14.58			Small	Neglible		1 Imperceptible	
																						Neglible
	361239.4		10.46	12.24		21.68	0.85	14.58		11.38	13.31		22.2	0.95	14.58			Small	Neglible		6 Imperceptible	Neglible
	361213.6		6.27			19.24	0.72	14.58		6.71	7.85		19.5	0.78	14.58			Imperceptible	Neglible		5 Imperceptible	Neglible
	361169.4		8.05	9.42		20.28	0.92	14.58	15.50	8.64	10.10	15.47	20.62	0.99	14.58	15.57	0.85	Imperceptible	Neglible	0.20	0 Imperceptible	Neglible
52	361050.2	396995.9	13.42	15.70	15.35	23.25	1.46	15.59	17.05	13.89	16.25	15.35	23.51	1.52	15.59	17.11	0.65	Imperceptible	Neglible	0.14	4 Imperceptible	Neglible
53	361053.4	397023.9	10.91			21.93	1.15	14.58	15.73	11.42	13.37	15.47	22.23	1.21	14.58	15.79	0.75	Imperceptible	Neglible		5 Imperceptible	Neglible
East Lancs Road (
	361430.2	306052 6	8.68	10.15	15.35	20.53	1.26	15.59	16.85	8.84	10.35	15.35	20.63	1.28	15.59	16.87	0.05	Imperceptible	Neglible	0.00	6 Imperceptible	Neglible
	361570.2		7.62	8.92		19.92	1.10	15.59		7.76	9.08		20	1.12	15.59			Imperceptible	Neglible		5 Imperceptible	Neglible
	361861.2		5.73	6.71		18.8	0.76	15.59		5.84	6.84		18.87	0.77	15.59			Imperceptible	Neglible		4 Imperceptible	Neglible
57	361951	396881	7.07	8.27	15.35	19.59	0.85	15.59	16.44	7.20	8.42	15.35	19.67	0.87	15.59	16.46	0.20	Imperceptible	Neglible	0.04	4 Imperceptible	Neglible
	362018.8		8.10	9.48		20.35	0.84	14.78		8.24	9.65		20.43	0.86	14.78			Imperceptible	Neglible		5 Imperceptible	Neglible
	361987.6		17.19	20.11		25.35	1.78	15.59		17.46	20.42		25.5	1.82	15.59			Imperceptible	Neglible		9 Imperceptible	Neglible
60		396938.2	25.13	29.41		29.77	2.13	14.78		25.49	29.82		29.95	2.17	14.78			Imperceptible	Neglible		0 Imperceptible	Neglible
61	362078.3	396887.6	11.49	13.44	15.51	22.3	1.10	14.78	15.88	11.69	13.67	15.51	22.42	1.13	14.78	15.91	0.30	Imperceptible	Neglible	0.00	6 Imperceptible	Neglible

11th February 2013

Scenario D 2018 Without Development										Scenario E	Development										
Receptor Name	X	Υ	Modelled	Adjusted NOx	Backgroun	Total NO2			Total	Modelled	Adjusted NOx	Backgroun	Total NO2			Total	% change	magnitude of	descriptor	% change magnitude of	descriptor
			NOx	(x1.17)	d NO2		PM10	d PM10	PM10	Nox	(x1.17)	d NO2		PM10	PM10	PM10	NO2	change		PM10 change	
Kenyon Lane / Ne			10.75	10.50	1	04.00	1 101		15.70	44.00	10.00	1	00.04	1 4 6 4	44.70	45.00	2 40	I	Is		Tax en r
	362217.4	396852.3	10.75	12.58		21.88	1.01	14.78		11.02			22.04	1.04	14.78	15.82	0.40		Neglible	0.08 Imperceptible	Neglible
66	362249.9	396801.2	12.02	14.06	15.51	22.61	1.03	14.78		12.28	14.37	15.51	22.76	1.06	14.78	15.84	0.38	Imperceptible	Neglible	0.07 Imperceptible	Neglible
67	362280.7	396794.1	23.74	27.78	15.51	29.04	1.95			24.23	28.35		29.29	2.00	14.78	16.78	0.63	Imperceptible	Neglible	0.12 Imperceptible	Neglible
68	362269.2	396755.5	32.21	37.69	15.51	33.39	2.29	14.78		32.52	38.05		33.54	2.32	14.78	17.10	0.37	Imperceptible	Neglible	0.08 Imperceptible	Neglible
69	362277.6	396736.1	20.23	23.67	15.51	27.16	1.56	14.78		20.45	23.93		27.28	1.59	14.78	16.37	0.30	Imperceptible	Neglible	0.06 Imperceptible	Neglible
70		396680.2	5.48		15.51	18.81	0.60	14.78		5.54	6.49		18.85	0.61	14.78	15.39	0.10	Imperceptible	Neglible	0.02 Imperceptible	Neglible
71		396704.9	7.91	9.26	15.51	20.24	0.82	14.78		8.01	9.37		20.3	0.83	14.78	15.61	0.15		Neglible	0.03 Imperceptible	Neglible
72		396728.4	11.78	13.78		22.47	1.02			12.00	14.04		22.59	1.04	14.78	15.82	0.30		Neglible	0.06 Imperceptible	Neglible
73	362319.7	396695.3	4.94	5.78 13.57	15.51	18.49 22.37	0.50	14.78		5.04	5.89		18.55 22.55	0.52	14.78	15.30	0.15	Imperceptible	Neglible	0.03 Imperceptible	Neglible
74		396718.9	11.60		15.51		1.34	14.78 14.78		11.92	13.95 23.64		27.15	1.38	14.78	16.16 16.43	0.45	Imperceptible	Neglible	0.11 Imperceptible	Neglible
75		396739.8	19.74	23.10	15.51	26.9				20.21				1.65	14.78		0.63	Imperceptible	Neglible	0.12 Imperceptible	Neglible
76		396758.7	25.96	30.38	15.51	30.2	1.95			26.34	30.81	15.51	30.39	1.99	14.78	16.77	0.48	Imperceptible	Neglible	0.10 Imperceptible	Neglible
77		396769.5	22.06	25.81	15.51	28.14	1.75			22.37	26.17		28.31	1.78	14.78	16.56	0.42		Neglible	0.08 Imperceptible	Neglible
78	00000	396820.7	18.79 20.01	21.99 23.41		26.38 27.04	1.73 1.68			18.99 20.18		15.51 15.51	26.49 27.13	1.75 1.70	14.78 14.78	16.53 16.48		Imperceptible	Neglible	0.05 Imperceptible	Neglible
79	362314	396847.1		23.41	15.51	27.04	1.08	14.78	10.40	20.18	23.61	15.51	27.13	1.70	14.78	10.48	0.23	Imperceptible	Neglible	0.05 Imperceptible	Neglible
East Lanes Road				17.10	15.51	04.00	1.00	1470	10.00	14.70	17.00	1 1 5 5 1	04.17	1 100	14.70	10.07	0.00	l man a va a matila la	Nasible	0.04	Masible
	362378.1 362393.2		14.64 15.20	17.13 17.78		24.09	1.28			14.79 15.36			24.17	1.29	14.78 14.78	16.07 16.15		Imperceptible	Neglible	0.04 Imperceptible 0.05 Imperceptible	Neglible Neglible
81 82	362424.4	396890.9	16.93	17.78	15.51	25.36	1.51	14.78		17.12			25.47	1.53	14.78	16.31	0.23	Imperceptible	Neglible		Neglible
83																			Neglible	0.06 Imperceptible 0.06 Imperceptible	
84	362465.7 362447.3	396892.6 396892.6	15.63	18.29 19.24		24.64 25.09	1.40	14.78 14.78		15.82 16.64	18.51 19.47	15.51	24.75 25.25	1.43	14.78 14.78	16.21	0.27		Neglible		Neglible
85	362447.3	396892.6	16.44 14.55	17.02	15.51 15.51	24.03		14.78		14.73	17.23		24.14	1.49	14.78	16.27 16.14			Neglible	0.06 Imperceptible 0.05 Imperceptible	Neglible
86	362538.2	396893.1	12.11	17.02	15.51	22.66	1.34	14.78		12.27	14.35		22.75	1.36 1.26	14.78	16.04	0.27	Imperceptible	Neglible Neglible	Production	Neglible
								14.78				15.51	25.04		14.78			Imperceptible			Neglible
87	362586.1	396942.6	16.13	18.87	15.51	24.91	1.95			16.35	19.13		26.49	1.98		16.76	0.32	Imperceptible	Neglible	0.08 Imperceptible	Neglible
88	362523.6	396943.4 396943.5	18.76 20.70	21.94 24.22	15.51	26.36	2.00	14.78 14.78		19.00		15.51		2.03	14.78	16.81	0.32		Neglible	0.08 Imperceptible	Neglible
89	362487.1				15.51	27.41		14.78		20.96			27.55 25.29	2.12	14.78	16.90	0.35	Imperceptible	Neglible	0.08 Imperceptible	Neglible
90	362459.6	396976.3	16.62 22.87	19.44 26.75	15.51	25.24 28.57	1.55 2.09			16.81	19.66 27.04		25.29	1.57	14.78	16.35 16.90	0.13	Imperceptible	Neglible	0.06 Imperceptible	Neglible
	362411.2 362640				15.51	23.01	1.56	14.78 14.78		23.11		15.51	23.11	2.12 1.58	14.78		0.32		Neglible	0.07 Imperceptible	Neglible
DT159 Newton Road	362640	396905	12.73	14.90	15.51	23.01	1.56	14.78	16.34	12.90	15.10	15.51	23.11	1.38	14.78	16.36	0.25	Imperceptible	Neglible	0.06 Imperceptible	Neglible
Newton Hoad 91	362505.8	397037.4	9.70	11.35	15.01	20.79	1.02	14.22	15.24	9.81	11.48	15.01	20.86	1.04	14.22	15.26	0.10	Imperceptible	Neglible	0.04 Imperceptible	Neglible
92	362544.6	397037.4	9.70	11.33	15.01	20.79	1.02	14.22	15.24	9.81	11.48	15.01	20.88	1.04	14.22	15.27	0.18			0.04 Imperceptible	
92	362544.6	397105.3	10.61		15.01	21.32	1.04	14.22		10.71	12.53		21.38			15.41			Neglible	0.03 Imperceptible	Neglible
93		397117.7	11.54	12.41 13.51	15.01	21.85	1.17			11.66			21.38	1.19 1.24	14.22 14.22	15.46	0.15		Neglible	0.03 Imperceptible	Neglible
95	362475.2	397008	16.98	19.86	15.01	24.91	1.57	14.22	15.44	17.15	20.07	15.01	25.01	1.60	14.22	15.46	0.18 0.25	Imperceptible Imperceptible	Neglible Neglible	0.04 Imperceptible	Neglible Neglible
97	362344.2	396974.7	13.86	16.22	15.01	23.65	1.25	14.22		14.07	16.46		23.77	1.28	14.78	16.06	0.23			0.06 Imperceptible	Neglible
98	362294.4	396961.8	15.55	18.20	15.51	24.6	1.40	14.78	16.03	15.82		15.51	24.74	1.43	14.78	16.21	0.35		Neglible Neglible		Neglible
DT158	362747	397290	8.62	10.20		20.16	0.99			8.69			20.21	1.43	14.76	15.22		Imperceptible Imperceptible	Neglible	0.08 Imperceptible 0.02 Imperceptible	Neglible
Development Site		397290	0.02	10.06	13.01	20.16	0.99	14.22	13.21	0.09	10.17	15.01	20.21	1.00	14.22	13.22	0.13	Imperceptible	Ineglible	0.02 Imperceptible	Ineglible
101		397122.9			1	1	1	1	1	2.57	3.00	15.47	17.03	0.33	14.58	14.91	1	I			1
101	361377.6									2.57	3.43		17.03	0.33	14.58	14.95			_		
102	361377.6	397122.7								2.93	2.72		16.88	0.37	14.58	14.95					
103	361702.4	397304.8								1.89		15.47	16.62	0.28	14.58	14.81					
104	361702.4	397503.7									2.21		16.57		14.58	14.80					
105	361527.4	397503.7								1.81 5.31	6.21		18.55	0.22	15.59	16.31					
106	361644.4	396995.5								4.88	5.71		18.55	0.72	15.59	16.27					
107										2.08			16.62	0.68	15.59	15.85					
108	301337.8	397203.8								2.08	2.43	15.35	10.02	0.26	15.59	13.83					

11th February 2013